Skip to content

Commit ba06e92

Browse files
Merge pull request #13525 from tensorflow:LakshmiKalaKadali-patch-4
PiperOrigin-RevId: 733182458
2 parents 2d164b5 + 453f64d commit ba06e92

File tree

2 files changed

+6
-6
lines changed

2 files changed

+6
-6
lines changed

Diff for: official/vision/ops/augment.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -2697,8 +2697,8 @@ def distort(self, images: tf.Tensor,
26972697

26982698
@staticmethod
26992699
def _sample_from_beta(alpha, beta, shape):
2700-
sample_alpha = tf.random.gamma(shape, 1., beta=alpha)
2701-
sample_beta = tf.random.gamma(shape, 1., beta=beta)
2700+
sample_alpha = tf.random.gamma(shape, alpha, beta=1.0)
2701+
sample_beta = tf.random.gamma(shape, beta, beta=1.0)
27022702
return sample_alpha / (sample_alpha + sample_beta)
27032703

27042704
def _cutmix(self, images: tf.Tensor,

Diff for: research/audioset/README.md

+4-4
Original file line numberDiff line numberDiff line change
@@ -18,18 +18,18 @@ For more details about AudioSet and the various models we have trained, please
1818
visit the [AudioSet website](http://g.co/audioset) and read our papers:
1919

2020
* Gemmeke, J. et. al.,
21-
[AudioSet: An ontology and human-labelled dataset for audio events](https://research.google.com/pubs/pub45857.html),
21+
[AudioSet: An ontology and human-labelled dataset for audio events](https://research.google/pubs/audio-set-an-ontology-and-human-labeled-dataset-for-audio-events/),
2222
ICASSP 2017
2323

2424
* Hershey, S. et. al.,
25-
[CNN Architectures for Large-Scale Audio Classification](https://research.google.com/pubs/pub45611.html),
25+
[CNN Architectures for Large-Scale Audio Classification](https://research.google/pubs/cnn-architectures-for-large-scale-audio-classification/),
2626
ICASSP 2017
2727

2828
If you use any of our pre-trained models in your published research, we ask that
29-
you cite [CNN Architectures for Large-Scale Audio Classification](https://research.google.com/pubs/pub45611.html).
29+
you cite [CNN Architectures for Large-Scale Audio Classification](https://research.google/pubs/cnn-architectures-for-large-scale-audio-classification/).
3030
If you use the AudioSet dataset or the released embeddings of AudioSet segments,
3131
please cite
32-
[AudioSet: An ontology and human-labelled dataset for audio events](https://research.google.com/pubs/pub45857.html).
32+
[AudioSet: An ontology and human-labelled dataset for audio events](https://research.google/pubs/audio-set-an-ontology-and-human-labeled-dataset-for-audio-events/).
3333

3434
## Contact
3535

0 commit comments

Comments
 (0)