-
Notifications
You must be signed in to change notification settings - Fork 458
/
Copy pathdppl_mean.py
56 lines (50 loc) · 1.61 KB
/
dppl_mean.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import flax.linen.pooling as pooling
import hydra
import jax
import jax.numpy as jnp
from omegaconf import DictConfig, OmegaConf
from lib import coinpress, utils
@hydra.main(config_path="conf", config_name="mean", version_base=None)
def main(cfg: DictConfig):
print(OmegaConf.to_yaml(cfg))
x_train, y_train, x_test, y_test = utils.load_dataset(cfg)
x_train = pooling.avg_pool(
x_train.T, window_shape=(cfg.pool,), strides=(cfg.pool,)
).T
x_test = pooling.avg_pool(
x_test.T, window_shape=(cfg.pool,), strides=(cfg.pool,)
).T
x_imbalanced, y_imbalanced = utils.give_imbalanced_set(
x_train, y_train, cfg.imbalance_ratio
)
classes = jnp.unique(y_imbalanced)
if cfg.epsilon < jnp.inf:
rho = utils.zcdp_of_naive_epsilon(cfg.epsilon)
ps = jnp.array([5 / 64, 7 / 64, 52 / 64]) * rho
key = jax.random.key(cfg.seed)
class_keys = jax.random.split(key, len(classes))
r = jnp.sqrt(x_imbalanced.shape[1])
protos = jnp.stack(
[
coinpress.private_mean_jit(
x_imbalanced[y_imbalanced == i], ps, key=class_keys[i], r=r
)
for i in classes
]
)
else:
protos = jnp.stack(
[x_imbalanced[y_imbalanced == i].mean(axis=0) for i in classes]
)
dists_test = utils.pairwise_distance(protos, x_test)
test_acc = float((dists_test.argmin(axis=0) == y_test).mean())
test_acc_per_class = jnp.stack(
[
(dists_test[..., y_test == target].argmin(axis=0) == target).mean()
for target in classes
]
)
print(f"Test accuracy: {test_acc}")
print(f"Test accuracy per class: {test_acc_per_class}")
if __name__ == "__main__":
main()