39
39
from tensorflow_privacy .privacy .analysis .rdp_accountant import get_privacy_spent
40
40
from tensorflow_privacy .privacy .optimizers import dp_optimizer
41
41
42
- if LooseVersion (tf .__version__ ) < LooseVersion ('2.0.0' ):
43
- GradientDescentOptimizer = tf .train .GradientDescentOptimizer
44
- else :
45
- GradientDescentOptimizer = tf .optimizers .SGD # pylint: disable=invalid-name
46
-
47
42
FLAGS = flags .FLAGS
48
43
49
44
flags .DEFINE_boolean (
@@ -66,10 +61,10 @@ def lr_model_fn(features, labels, mode, nclasses, dim):
66
61
logits = tf .layers .dense (
67
62
inputs = input_layer ,
68
63
units = nclasses ,
69
- kernel_regularizer = tf .contrib . layers . l2_regularizer (
70
- scale = FLAGS .regularizer ),
71
- bias_regularizer = tf .contrib . layers . l2_regularizer (
72
- scale = FLAGS .regularizer ))
64
+ kernel_regularizer = tf .keras . regularizers . l2 (
65
+ l = FLAGS .regularizer ),
66
+ bias_regularizer = tf .keras . regularizers . l2 (
67
+ l = FLAGS .regularizer ))
73
68
74
69
# Calculate loss as a vector (to support microbatches in DP-SGD).
75
70
vector_loss = tf .nn .sparse_softmax_cross_entropy_with_logits (
@@ -91,7 +86,7 @@ def lr_model_fn(features, labels, mode, nclasses, dim):
91
86
learning_rate = FLAGS .learning_rate )
92
87
opt_loss = vector_loss
93
88
else :
94
- optimizer = GradientDescentOptimizer (learning_rate = FLAGS .learning_rate )
89
+ optimizer = tf . train . GradientDescentOptimizer (learning_rate = FLAGS .learning_rate )
95
90
opt_loss = scalar_loss
96
91
global_step = tf .train .get_global_step ()
97
92
train_op = optimizer .minimize (loss = opt_loss , global_step = global_step )
0 commit comments