Open
Description
I created a quantum neural network using tensorflow quantum,It's input is a tensor converted by circuit.About this input circuit,I found that if the parameters of the circuit are also specified by tensors, the quantum neural network cannot be trained.
The circuit when using normal parameters can make the network train normally
theta_g=1
blob_size = abs(1 - 4) / 5
spread_x = np.random.uniform(-blob_size, blob_size)
spread_y = np.random.uniform(-blob_size, blob_size)
angle = theta_g + spread_y
cir=cirq.Circuit(cirq.ry(-angle)(qubit), cirq.rx(-spread_x)(qubit))
discriminator_network(tfq.convert_to_tensor([cir]))
But when I use the following code, the quantum neural network cannot be trained
theta_g=tf.constant([1])
blob_size = abs(1 - 4) / 5
spread_x = np.random.uniform(-blob_size, blob_size)
spread_y = np.random.uniform(-blob_size, blob_size)
spred_x = tf.constant(spread_x)
spred_y = tf.constant(spread_y)
angle = theta_g + spread_y
cir=cirq.Circuit(cirq.ry(-angle)(qubit), cirq.rx(-spread_x)(qubit))
discriminator_network(tfq.convert_to_tensor([cir]))
The discriminator_network
def discriminator():
theta = sympy.Symbol('theta')
q_model = cirq.Circuit(cirq.ry(theta)(qubit))
q_data_input = tf.keras.Input(
shape=(), dtype=tf.dtypes.string)
expectation = tfq.layers.PQC(q_model, cirq.Z(qubit))
expectation_output = expectation(q_data_input)
classifier = tf.keras.layers.Dense(1, activation=tf.keras.activations.sigmoid)
classifier_output = classifier(expectation_output)
model = tf.keras.Model(inputs=q_data_input, outputs=classifier_output)
return model