-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
Copy pathdata_mnist.js
254 lines (225 loc) · 7.87 KB
/
data_mnist.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* Provides methods and classes that support loading data from
* both MNIST and Fashion MNIST datasets.
*/
import * as tf from '@tensorflow/tfjs';
import * as fs from 'fs';
import * as http from 'http';
import * as https from 'https';
import * as path from 'path';
import * as util from 'util';
import * as zlib from 'zlib';
const exists = util.promisify(fs.exists);
const mkdir = util.promisify(fs.mkdir);
const readFile = util.promisify(fs.readFile);
const rename = util.promisify(fs.rename);
// Shared specs for the MNIST and Fashion MNIST datasets.
const IMAGE_HEADER_MAGIC_NUM = 2051;
const IMAGE_HEADER_BYTES = 16;
const IMAGE_HEIGHT = 28;
const IMAGE_WIDTH = 28;
const IMAGE_FLAT_SIZE = IMAGE_HEIGHT * IMAGE_WIDTH;
const LABEL_HEADER_MAGIC_NUM = 2049;
const LABEL_HEADER_BYTES = 8;
const LABEL_RECORD_BYTE = 1;
const LABEL_FLAT_SIZE = 10;
// Downloads a test file only once and returns the buffer for the file.
export async function fetchOnceAndSaveToDiskWithBuffer(
baseURL, destDir, filename) {
return new Promise(async (resolve, reject) => {
const url = `${baseURL}${filename}.gz`;
const localPath = path.join(destDir, filename);
if (await exists(localPath)) {
resolve(readFile(localPath));
return;
}
const file = fs.createWriteStream(filename);
console.log(` * Downloading from: ${url}`);
let httpModule;
if (url.indexOf('https://') === 0) {
httpModule = https;
} else if (url.indexOf('http://') === 0) {
httpModule = http;
} else {
return reject(`Unrecognized protocol in URL: ${url}`);
}
httpModule.get(url, (response) => {
const unzip = zlib.createGunzip();
response.pipe(unzip).pipe(file);
unzip.on('end', async () => {
await rename(filename, localPath);
resolve(readFile(localPath));
});
});
});
}
function loadHeaderValues(buffer, headerLength) {
const headerValues = [];
for (let i = 0; i < headerLength / 4; i++) {
// Header data is stored in-order (aka big-endian)
headerValues[i] = buffer.readUInt32BE(i * 4);
}
return headerValues;
}
async function loadImages(baseURL, destDir, filename) {
const buffer =
await fetchOnceAndSaveToDiskWithBuffer(baseURL, destDir, filename);
const headerBytes = IMAGE_HEADER_BYTES;
const recordBytes = IMAGE_HEIGHT * IMAGE_WIDTH;
const headerValues = loadHeaderValues(buffer, headerBytes);
tf.util.assert(
headerValues[0] === IMAGE_HEADER_MAGIC_NUM,
() => `Image file header doesn't match expected magic num.`);
tf.util.assert(
headerValues[2] === IMAGE_HEIGHT,
() => `Value in file header (${headerValues[2]}) doesn't ` +
`match the expected image height ${IMAGE_HEIGHT}`);
tf.util.assert(
headerValues[3] === IMAGE_WIDTH,
() => `Value in file header (${headerValues[3]}) doesn't ` +
`match the expected image height ${IMAGE_WIDTH}`);
const images = [];
let index = headerBytes;
while (index < buffer.byteLength) {
const array = new Float32Array(recordBytes);
for (let i = 0; i < recordBytes; i++) {
// Normalize the pixel values into the 0-1 interval, from
// the original 0-255 interval.
array[i] = buffer.readUInt8(index++) / 255;
}
images.push(array);
}
tf.util.assert(
images.length === headerValues[1],
() => `Actual images length (${images.length} doesn't match ` +
`value in header (${headerValues[1]})`);
return images;
}
async function loadLabels(baseURL, destDir, filename) {
const buffer =
await fetchOnceAndSaveToDiskWithBuffer(baseURL, destDir, filename);
const headerBytes = LABEL_HEADER_BYTES;
const recordBytes = LABEL_RECORD_BYTE;
const headerValues = loadHeaderValues(buffer, headerBytes);
tf.util.assert(
headerValues[0] === LABEL_HEADER_MAGIC_NUM,
() => `Label file header doesn't match expected magic num.`);
const labels = [];
let index = headerBytes;
while (index < buffer.byteLength) {
const array = new Int32Array(recordBytes);
for (let i = 0; i < recordBytes; i++) {
array[i] = buffer.readUInt8(index++);
}
labels.push(array);
}
tf.util.assert(
labels.length === headerValues[1],
() => `Actual labels length (${images.length} doesn't match ` +
`value in header (${headerValues[1]})`);
return labels;
}
/** Helper class to handle loading training and test data. */
export class MnistDataset {
// MNIST data constants:
constructor() {
this.dataset = null;
this.trainSize = 0;
this.testSize = 0;
this.trainBatchIndex = 0;
this.testBatchIndex = 0;
}
getBaseUrlAndFilePaths() {
return {
baseUrl: 'https://storage.googleapis.com/cvdf-datasets/mnist/',
destDir: 'data-mnist',
trainImages: 'train-images-idx3-ubyte',
trainLabels: 'train-labels-idx1-ubyte',
testImages: 't10k-images-idx3-ubyte',
testLabels: 't10k-labels-idx1-ubyte'
}
}
/** Loads training and test data. */
async loadData() {
const baseUrlAndFilePaths = this.getBaseUrlAndFilePaths();
const baseUrl = baseUrlAndFilePaths.baseUrl;
const destDir = baseUrlAndFilePaths.destDir;
if (!(await exists(destDir))) {
await mkdir(destDir);
}
this.dataset = await Promise.all([
loadImages(baseUrl, destDir, baseUrlAndFilePaths.trainImages),
loadLabels(baseUrl, destDir, baseUrlAndFilePaths.trainLabels),
loadImages(baseUrl, destDir, baseUrlAndFilePaths.testImages),
loadLabels(baseUrl, destDir, baseUrlAndFilePaths.testLabels)
]);
this.trainSize = this.dataset[0].length;
this.testSize = this.dataset[2].length;
}
getTrainData() {
return this.getData_(true);
}
getTestData() {
return this.getData_(false);
}
getData_(isTrainingData) {
let imagesIndex;
let labelsIndex;
if (isTrainingData) {
imagesIndex = 0;
labelsIndex = 1;
} else {
imagesIndex = 2;
labelsIndex = 3;
}
const size = this.dataset[imagesIndex].length;
tf.util.assert(
this.dataset[labelsIndex].length === size,
`Mismatch in the number of images (${size}) and ` +
`the number of labels (${this.dataset[labelsIndex].length})`);
// Only create one big array to hold batch of images.
const imagesShape = [size, IMAGE_HEIGHT, IMAGE_WIDTH, 1];
const images = new Float32Array(tf.util.sizeFromShape(imagesShape));
const labels = new Int32Array(tf.util.sizeFromShape([size, 1]));
let imageOffset = 0;
let labelOffset = 0;
for (let i = 0; i < size; ++i) {
images.set(this.dataset[imagesIndex][i], imageOffset);
labels.set(this.dataset[labelsIndex][i], labelOffset);
imageOffset += IMAGE_FLAT_SIZE;
labelOffset += 1;
}
return {
images: tf.tensor4d(images, imagesShape),
labels: tf.oneHot(tf.tensor1d(labels, 'int32'), LABEL_FLAT_SIZE).toFloat()
};
}
}
export class FashionMnistDataset extends MnistDataset {
getBaseUrlAndFilePaths() {
return {
baseUrl: 'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/',
destDir: 'data-fashion-mnist',
trainImages: 'train-images-idx3-ubyte',
trainLabels: 'train-labels-idx1-ubyte',
testImages: 't10k-images-idx3-ubyte',
testLabels: 't10k-labels-idx1-ubyte'
}
}
}