@@ -9,7 +9,7 @@ for JS developers without ML knowledge. It has the following features:
99- ** Easy-to-discover models**
1010
1111 Models from different runtime systems (e.g. [ TFJS] [ tfjs ] , [ TFLite] [ tflite ] ,
12- [ MediaPipe] [ mediapipe ] , etc) are grouped by popular ML tasks, such as.
12+ [ MediaPipe] [ mediapipe ] , etc) are grouped by popular ML tasks, such as
1313 sentiment detection, image classification, pose detection, etc.
1414
1515- ** Clean and powerful APIs**
@@ -28,7 +28,128 @@ for JS developers without ML knowledge. It has the following features:
2828
2929The following table summarizes all the supported tasks and their models:
3030
31- (TODO)
31+ <table >
32+ <thead >
33+ <tr>
34+ <th>Task</th>
35+ <th>Model</th>
36+ <th>Supported runtimes · Docs · Resources</th>
37+ </tr>
38+ </thead >
39+ <tbody >
40+ <!-- Image classification -->
41+ <tr>
42+ <td rowspan="2">
43+ <b>Image Classification</b>
44+ <br>
45+ Identify images into predefined classes.
46+ <br>
47+ <a href="https://codepen.io/jinjingforever/pen/VwPOePq">Demo</a>
48+ </td>
49+ <td>Mobilenet</td>
50+ <td>
51+ <div>
52+ <span><code>TFJS </code></span>
53+ <span>·</span>
54+ <a href="#">API doc</a>
55+ </div>
56+ <div>
57+ <span><code>TFLite</code></span>
58+ <span>·</span>
59+ <a href="#">API doc</a>
60+ </div>
61+ </td>
62+ </tr>
63+ <tr>
64+ <td>Custom model</td>
65+ <td>
66+ <div>
67+ <span><code>TFLite</code></span>
68+ <span>·</span>
69+ <a href="#">API doc</a>
70+ <span>·</span>
71+ <a href="https://www.tensorflow.org/lite/inference_with_metadata/task_library/image_classifier#model_compatibility_requirements">Model requirements</a>
72+ <span>·</span>
73+ <a href="https://tfhub.dev/tensorflow/collections/lite/task-library/image-classifier/1">Model collection</a>
74+ </div>
75+ </td>
76+ </tr>
77+ <!-- Object detection -->
78+ <tr>
79+ <td rowspan="2">
80+ <b>Object Detection</b>
81+ <br>
82+ Localize and identify multiple objects in a single image.
83+ <br>
84+ <a href="https://codepen.io/jinjingforever/pen/PopPPXo">Demo</a>
85+ </td>
86+ <td>COCO-SSD</td>
87+ <td>
88+ <div>
89+ <span><code>TFJS </code></span>
90+ <span>·</span>
91+ <a href="#">API doc</a>
92+ </div>
93+ <div>
94+ <span><code>TFLite</code></span>
95+ <span>·</span>
96+ <a href="#">API doc</a>
97+ </div>
98+ </td>
99+ </tr>
100+ <tr>
101+ <td>Custom model</td>
102+ <td>
103+ <div>
104+ <span><code>TFLite</code></span>
105+ <span>·</span>
106+ <a href="#">API doc</a>
107+ <span>·</span>
108+ <a href="https://www.tensorflow.org/lite/inference_with_metadata/task_library/object_detector#model_compatibility_requirements">Model requirements</a>
109+ <span>·</span>
110+ <a href="https://tfhub.dev/tensorflow/collections/lite/task-library/object-detector/1">Model collection</a>
111+ </div>
112+ </td>
113+ </tr>
114+ <!-- Image Segmentation -->
115+ <tr>
116+ <td rowspan="2">
117+ <b>Image Segmentation</b>
118+ <br>
119+ Predict associated class for each pixel of an image.
120+ <br>
121+ <a href="https://codepen.io/jinjingforever/pen/yLMYVJw">Demo</a>
122+ </td>
123+ <td>Deeplab</td>
124+ <td>
125+ <div>
126+ <span><code>TFJS </code></span>
127+ <span>·</span>
128+ <a href="#">API doc</a>
129+ </div>
130+ <div>
131+ <span><code>TFLite</code></span>
132+ <span>·</span>
133+ <a href="#">API doc</a>
134+ </div>
135+ </td>
136+ </tr>
137+ <tr>
138+ <td>Custom model</td>
139+ <td>
140+ <div>
141+ <span><code>TFLite</code></span>
142+ <span>·</span>
143+ <a href="#">API doc</a>
144+ <span>·</span>
145+ <a href="https://www.tensorflow.org/lite/inference_with_metadata/task_library/image_segmenter#model_compatibility_requirements">Model requirements</a>
146+ <span>·</span>
147+ <a href="https://tfhub.dev/tensorflow/collections/lite/task-library/image-segmenter/1">Model collection</a>
148+ </div>
149+ </td>
150+ </tr>
151+ </tbody >
152+ </table >
32153
33154(The initial version only supports the web browser environment. NodeJS support is
34155coming soon)
@@ -78,7 +199,7 @@ const model3 = await tfTask.ImageClassification.CustomModel.TFLite.load({
78199Since all these models are for the ` Image Classification ` task, they will have
79200the same task model type: [ ` ImageClassifier ` ] [ image classifier interface ] in
80201this case. Each task model's ` predict ` inference method has an unique and
81- easy-to-use API interface. For example, in ` ImageClassiier ` , the method takes an
202+ easy-to-use API interface. For example, in ` ImageClassifier ` , the method takes an
82203image-like element and returns the predicted classes:
83204
84205``` js
0 commit comments