-
Notifications
You must be signed in to change notification settings - Fork 875
/
Copy pathpack_test.cc
257 lines (219 loc) · 10.4 KB
/
pack_test.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/micro/debug_log.h"
#include "tensorflow/lite/micro/kernels/kernel_runner.h"
#include "tensorflow/lite/micro/test_helpers.h"
#include "tensorflow/lite/micro/testing/micro_test.h"
namespace tflite {
namespace testing {
template <typename T>
void ValidatePackGoldens(TfLiteTensor* tensors, int tensors_size,
TfLitePackParams params, TfLiteIntArray* inputs_array,
TfLiteIntArray* outputs_array, const T* golden,
int output_len, float tolerance, T* output) {
// Place a unique value in the uninitialized output buffer.
for (int i = 0; i < output_len; ++i) {
output[i] = 23;
}
const TFLMRegistration registration = Register_PACK();
micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array,
outputs_array, reinterpret_cast<void*>(¶ms));
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare());
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke());
for (int i = 0; i < output_len; ++i) {
TF_LITE_MICRO_EXPECT_NEAR(golden[i], output[i], tolerance);
}
}
void TestPackTwoInputsFloat(int* input1_dims_data, const float* input1_data,
int* input2_dims_data, const float* input2_data,
int axis, int* output_dims_data,
const float* expected_output_data,
float* output_data) {
TfLiteIntArray* input1_dims = IntArrayFromInts(input1_dims_data);
TfLiteIntArray* input2_dims = IntArrayFromInts(input2_dims_data);
TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data);
const int output_dims_count = ElementCount(*output_dims);
constexpr int input_size = 2;
constexpr int output_size = 1;
constexpr int tensors_size = input_size + output_size;
TfLiteTensor tensors[tensors_size] = {CreateTensor(input1_data, input1_dims),
CreateTensor(input2_data, input2_dims),
CreateTensor(output_data, output_dims)};
TfLitePackParams builtin_data = {
.values_count = 2,
.axis = axis,
};
int inputs_array_data[] = {2, 0, 1};
TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data);
int outputs_array_data[] = {1, 2};
TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data);
ValidatePackGoldens(tensors, tensors_size, builtin_data, inputs_array,
outputs_array, expected_output_data, output_dims_count,
1e-5f, output_data);
}
void TestPackThreeInputsFloat(int* input1_dims_data, const float* input1_data,
int* input2_dims_data, const float* input2_data,
int* input3_dims_data, const float* input3_data,
int axis, int* output_dims_data,
const float* expected_output_data,
float* output_data) {
TfLiteIntArray* input1_dims = IntArrayFromInts(input1_dims_data);
TfLiteIntArray* input2_dims = IntArrayFromInts(input2_dims_data);
TfLiteIntArray* input3_dims = IntArrayFromInts(input3_dims_data);
TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data);
const int output_dims_count = ElementCount(*output_dims);
constexpr int input_size = 3;
constexpr int output_size = 1;
constexpr int tensors_size = input_size + output_size;
TfLiteTensor tensors[tensors_size] = {CreateTensor(input1_data, input1_dims),
CreateTensor(input2_data, input2_dims),
CreateTensor(input3_data, input3_dims),
CreateTensor(output_data, output_dims)};
TfLitePackParams builtin_data = {
.values_count = 3,
.axis = axis,
};
int inputs_array_data[] = {3, 0, 1, 2};
TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data);
int outputs_array_data[] = {1, 3};
TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data);
ValidatePackGoldens(tensors, tensors_size, builtin_data, inputs_array,
outputs_array, expected_output_data, output_dims_count,
1e-5f, output_data);
}
template <typename T>
void TestPackTwoInputsQuantized(int* input1_dims_data, const T* input1_data,
int* input2_dims_data, const T* input2_data,
int axis, int* output_dims_data,
const T* expected_output_data, T* output_data) {
TfLiteIntArray* input1_dims = IntArrayFromInts(input1_dims_data);
TfLiteIntArray* input2_dims = IntArrayFromInts(input2_dims_data);
TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data);
const int output_dims_count = ElementCount(*output_dims);
constexpr int input_size = 2;
constexpr int output_size = 1;
constexpr int tensors_size = input_size + output_size;
TfLiteTensor tensors[tensors_size] = {CreateTensor(input1_data, input1_dims),
CreateTensor(input2_data, input2_dims),
CreateTensor(output_data, output_dims)};
TfLitePackParams builtin_data = {
.values_count = 2,
.axis = axis,
};
int inputs_array_data[] = {2, 0, 1};
TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data);
int outputs_array_data[] = {1, 2};
TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data);
ValidatePackGoldens(tensors, tensors_size, builtin_data, inputs_array,
outputs_array, expected_output_data, output_dims_count,
1e-5f, output_data);
}
} // namespace testing
} // namespace tflite
TF_LITE_MICRO_TESTS_BEGIN
TF_LITE_MICRO_TEST(PackFloatThreeInputs) {
int input_shape[] = {1, 2};
int output_shape[] = {2, 3, 2};
const float input1_values[] = {1, 4};
const float input2_values[] = {2, 5};
const float input3_values[] = {3, 6};
const float golden[] = {1, 4, 2, 5, 3, 6};
const int axis = 0;
constexpr int output_dims_count = 6;
float output_data[output_dims_count];
tflite::testing::TestPackThreeInputsFloat(
input_shape, input1_values, input_shape, input2_values, input_shape,
input3_values, axis, output_shape, golden, output_data);
}
TF_LITE_MICRO_TEST(PackFloatThreeInputsDifferentAxis) {
int input_shape[] = {1, 2};
int output_shape[] = {2, 2, 3};
const float input1_values[] = {1, 4};
const float input2_values[] = {2, 5};
const float input3_values[] = {3, 6};
const float golden[] = {1, 2, 3, 4, 5, 6};
const int axis = 1;
constexpr int output_dims_count = 6;
float output_data[output_dims_count];
tflite::testing::TestPackThreeInputsFloat(
input_shape, input1_values, input_shape, input2_values, input_shape,
input3_values, axis, output_shape, golden, output_data);
}
TF_LITE_MICRO_TEST(PackFloatThreeInputsNegativeAxis) {
int input_shape[] = {1, 2};
int output_shape[] = {2, 2, 3};
const float input1_values[] = {1, 4};
const float input2_values[] = {2, 5};
const float input3_values[] = {3, 6};
const float golden[] = {1, 2, 3, 4, 5, 6};
const int axis = -1;
constexpr int output_dims_count = 6;
float output_data[output_dims_count];
tflite::testing::TestPackThreeInputsFloat(
input_shape, input1_values, input_shape, input2_values, input_shape,
input3_values, axis, output_shape, golden, output_data);
}
TF_LITE_MICRO_TEST(PackFloatMultiDimensions) {
int input_shape[] = {2, 2, 3};
int output_shape[] = {3, 2, 2, 3};
const float input1_values[] = {1, 2, 3, 4, 5, 6};
const float input2_values[] = {7, 8, 9, 10, 11, 12};
const float golden[] = {1, 2, 3, 7, 8, 9, 4, 5, 6, 10, 11, 12};
const int axis = 1;
constexpr int output_dims_count = 12;
float output_data[output_dims_count];
tflite::testing::TestPackTwoInputsFloat(input_shape, input1_values,
input_shape, input2_values, axis,
output_shape, golden, output_data);
}
TF_LITE_MICRO_TEST(PackQuantizedInt8MultiDimensions) {
int input_shape[] = {2, 2, 3};
int output_shape[] = {3, 2, 2, 3};
const int8_t input1_values[] = {1, 2, 3, 4, 5, 6};
const int8_t input2_values[] = {7, 8, 9, 10, 11, 12};
const int8_t golden[] = {1, 2, 3, 7, 8, 9, 4, 5, 6, 10, 11, 12};
const int axis = 1;
constexpr int output_dims_count = 12;
int8_t output_data[output_dims_count];
tflite::testing::TestPackTwoInputsQuantized<int8_t>(
input_shape, input1_values, input_shape, input2_values, axis,
output_shape, golden, output_data);
}
TF_LITE_MICRO_TEST(PackQuantizedInt16MultiDimensions) {
int input_shape[] = {2, 2, 3};
int output_shape[] = {3, 2, 2, 3};
const int16_t input1_values[] = {1, 2, 3, 4, 5, 6};
const int16_t input2_values[] = {7, 8, 9, 10, 11, 12};
const int16_t golden[] = {1, 2, 3, 7, 8, 9, 4, 5, 6, 10, 11, 12};
const int axis = 1;
constexpr int output_dims_count = 12;
int16_t output_data[output_dims_count];
tflite::testing::TestPackTwoInputsQuantized<int16_t>(
input_shape, input1_values, input_shape, input2_values, axis,
output_shape, golden, output_data);
}
TF_LITE_MICRO_TEST(PackQuantizedInt32MultiDimensions) {
int input_shape[] = {2, 2, 3};
int output_shape[] = {3, 2, 2, 3};
const int32_t input1_values[] = {1, 2, 3, 4, 5, 6};
const int32_t input2_values[] = {7, 8, 9, 10, 11, 12};
const int32_t golden[] = {1, 2, 3, 7, 8, 9, 4, 5, 6, 10, 11, 12};
const int axis = 1;
constexpr int output_dims_count = 12;
int32_t output_data[output_dims_count];
tflite::testing::TestPackTwoInputsQuantized<int32_t>(
input_shape, input1_values, input_shape, input2_values, axis,
output_shape, golden, output_data);
}
TF_LITE_MICRO_TESTS_END