Skip to content

[Conv] Fix Conv L1 Estimation for Automatic DRAM Slicing #37643

@wransom-TT

Description

@wransom-TT

During implementation of automatic DRAM slicing for Pool2D it was discovered that Conv2D sometimes runs with an invalid slice config but does not crash with OOM errors, indicating that the Conv2D L1 estimation is incorrect.

To repro run:
pytest "tests/ttnn/unit_tests/operations/conv/test_conv_transpose2d.py::test_convt2d_dram[mirror_kernel=False-preprocess_weights=False-activations_dtype=DataType.BFLOAT8_B-layout=Layout.TILE-weights_dtype=DataType.BFLOAT16-batch_size=1-input_height=512-input_width=512-input_channels=64-output_channels=64-filter_height=3-filter_width=3-stride_h=1-stride_w=1-pad_h=1-pad_w=1-out_pad_h=0-out_pad_w=0-config=None-shard_layout=TensorMemoryLayout.HEIGHT_SHARDED-num_slices=4-slice_type=SliceTypeEnum.DRAMSliceWidth-device_params={'l1_small_size': 65536}]"

on Wormhole N150 after removing the conv_bypass.

Metadata

Metadata

Assignees

Labels

CNNsP1bugSomething isn't workingop_cat: conv2D2D convolution for CNNs

Type

Projects

Status

🆕 New

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions