@@ -26,9 +26,9 @@ type FunctionArgs struct {
26
26
Offset int64
27
27
MetricAppearedTs * int64
28
28
29
- // Only holt-winters uses two arguments, we fall back for that.
30
29
// quantile_over_time and predict_linear use one, so we only use one here.
31
- ScalarPoint float64
30
+ ScalarPoint float64
31
+ ScalarPoint2 float64 // only for double_exponential_smoothing (trend factor)
32
32
}
33
33
34
34
type FunctionCall func (f FunctionArgs ) (* float64 , * histogram.FloatHistogram , bool , error )
@@ -299,6 +299,33 @@ var rangeVectorFuncs = map[string]FunctionCall{
299
299
v := predictLinear (f .Samples , f .ScalarPoint , f .StepTime )
300
300
return & v , nil , true , nil
301
301
},
302
+ "double_exponential_smoothing" : func (f FunctionArgs ) (* float64 , * histogram.FloatHistogram , bool , error ) {
303
+ if len (f .Samples ) < 2 {
304
+ if len (f .Samples ) == 1 && f .Samples [0 ].V .H != nil {
305
+ warnings .AddToContext (annotations .MixedFloatsHistogramsWarning , f .ctx )
306
+ return nil , nil , false , nil
307
+ }
308
+ return nil , nil , false , nil
309
+ }
310
+
311
+ // Annotate mix of float and histogram.
312
+ for _ , s := range f .Samples {
313
+ if s .V .H != nil {
314
+ warnings .AddToContext (annotations .MixedFloatsHistogramsWarning , f .ctx )
315
+ return nil , nil , false , nil
316
+ }
317
+ }
318
+
319
+ sf := f .ScalarPoint // smoothing factor or alpha
320
+ tf := f .ScalarPoint2 // trend factor argument or beta
321
+
322
+ v , ok := doubleExponentialSmoothing (f .Samples , sf , tf )
323
+ if ! ok {
324
+ return nil , nil , false , nil
325
+ }
326
+
327
+ return & v , nil , true , nil
328
+ },
302
329
}
303
330
304
331
func NewRangeVectorFunc (name string ) (FunctionCall , error ) {
@@ -735,6 +762,65 @@ func predictLinear(points []Sample, duration float64, stepTime int64) float64 {
735
762
return slope * duration + intercept
736
763
}
737
764
765
+ // Based on https://github.com/prometheus/prometheus/blob/8baad1a73e471bd3cf3175a1608199e27484f179/promql/functions.go#L438
766
+ // doubleExponentialSmoothing calculates the smoothed out value for the given series.
767
+ // It is similar to a weighted moving average, where historical data has exponentially less influence on the current data.
768
+ // It also accounts for trends in data. The smoothing factor (0 < sf < 1), aka "alpha", affects how historical data will affect the current data.
769
+ // A lower smoothing factor increases the influence of historical data.
770
+ // The trend factor (0 < tf < 1), aka "beta", affects how trends in historical data will affect the current data.
771
+ // A higher trend factor increases the influence of trends.
772
+ // Algorithm taken from https://en.wikipedia.org/wiki/Exponential_smoothing
773
+ func doubleExponentialSmoothing (points []Sample , sf , tf float64 ) (float64 , bool ) {
774
+ // Check that the input parameters are valid
775
+ if sf <= 0 || sf >= 1 || tf <= 0 || tf >= 1 {
776
+ return 0 , false
777
+ }
778
+
779
+ // Can't do the smoothing operation with less than two points
780
+ if len (points ) < 2 {
781
+ return 0 , false
782
+ }
783
+
784
+ // Check for histograms in the samples
785
+ for _ , s := range points {
786
+ if s .V .H != nil {
787
+ return 0 , false
788
+ }
789
+ }
790
+
791
+ var s0 , s1 , b float64
792
+ // Set initial values
793
+ s1 = points [0 ].V .F
794
+ b = points [1 ].V .F - points [0 ].V .F
795
+
796
+ // Run the smoothing operation
797
+ for i := 1 ; i < len (points ); i ++ {
798
+ // Scale the raw value against the smoothing factor
799
+ x := sf * points [i ].V .F
800
+ // Scale the last smoothed value with the trend at this point
801
+ b = calcTrendValue (i - 1 , tf , s0 , s1 , b )
802
+ y := (1 - sf ) * (s1 + b )
803
+ s0 , s1 = s1 , x + y
804
+ }
805
+
806
+ return s1 , true
807
+ }
808
+
809
+ // calcTrendValue calculates the trend value at the given index i.
810
+ // This is somewhat analogous to the slope of the trend at the given index.
811
+ // The argument "tf" is the trend factor.
812
+ // The argument "s0" is the previous smoothed value.
813
+ // The argument "s1" is the current smoothed value.
814
+ // The argument "b" is the previous trend value.
815
+ func calcTrendValue (i int , tf , s0 , s1 , b float64 ) float64 {
816
+ if i == 0 {
817
+ return b
818
+ }
819
+ x := tf * (s1 - s0 )
820
+ y := (1 - tf ) * b
821
+ return x + y
822
+ }
823
+
738
824
func resets (points []Sample ) float64 {
739
825
var histogramPoints []Sample
740
826
var floatPoints []Sample
0 commit comments