@@ -151,20 +151,6 @@ instance
151151 Extensional-Π'' ⦃ sb ⦄ .idsᵉ .to-path h i = sb .idsᵉ .to-path h i
152152 Extensional-Π'' ⦃ sb ⦄ .idsᵉ .to-path-over h i = sb .idsᵉ .to-path-over h i
153153
154- Extensional-×
155- : ∀ {ℓ ℓ' ℓr ℓs} {A : Type ℓ} {B : Type ℓ'}
156- → ⦃ sa : Extensional A ℓr ⦄
157- → ⦃ sb : Extensional B ℓs ⦄
158- → Extensional (A × B) (ℓr ⊔ ℓs)
159- Extensional-× ⦃ sa ⦄ ⦃ sb ⦄ .Pathᵉ (x , y) (x' , y') = Pathᵉ sa x x' × Pathᵉ sb y y'
160- Extensional-× ⦃ sa ⦄ ⦃ sb ⦄ .reflᵉ (x , y) = reflᵉ sa x , reflᵉ sb y
161- Extensional-× ⦃ sa ⦄ ⦃ sb ⦄ .idsᵉ .to-path (p , q) = ap₂ _,_
162- (sa .idsᵉ .to-path p)
163- (sb .idsᵉ .to-path q)
164- Extensional-× ⦃ sa ⦄ ⦃ sb ⦄ .idsᵉ .to-path-over (p , q) = Σ-pathp
165- (sa .idsᵉ .to-path-over p)
166- (sb .idsᵉ .to-path-over q)
167-
168154 -- Some non-confluent "reduction rules" for extensionality are those
169155 -- for functions from a type with a mapping-out property; here, we can
170156 -- immediately define instances for functions from Σ-types (equality
@@ -363,7 +349,12 @@ instance
363349 Extensional-equiv
364350 : ∀ {ℓ ℓ' ℓr} {A : Type ℓ} {B : Type ℓ'}
365351 → ⦃ ea : Extensional (A → B) ℓr ⦄ → Extensional (A ≃ B) ℓr
366- Extensional-equiv ⦃ ea ⦄ = Σ-prop-extensional (λ x → is-equiv-is-prop _) ea
352+ Extensional-equiv ⦃ ea ⦄ = Σ-prop-extensional (λ x → hlevel 1 ) ea
353+
354+ Extensional-emb
355+ : ∀ {ℓ ℓ' ℓr} {A : Type ℓ} {B : Type ℓ'}
356+ → ⦃ ea : Extensional (A → B) ℓr ⦄ → Extensional (A ↪ B) ℓr
357+ Extensional-emb ⦃ ea ⦄ = Σ-prop-extensional (λ x → hlevel 1 ) ea
367358
368359 Extensional-tr-map
369360 : ∀ {ℓ ℓ' ℓr} {A : Type ℓ} {B : Type ℓ'}
0 commit comments