diff --git a/src/Cat/Instances/Product.lagda.md b/src/Cat/Instances/Product.lagda.md index 02d538f29..7c38c0db3 100644 --- a/src/Cat/Instances/Product.lagda.md +++ b/src/Cat/Instances/Product.lagda.md @@ -135,7 +135,6 @@ _nt×_ α β .is-natural (c , d) (c' , d') (f , g) = Σ-pathp ``` --> - ## Univalence Isomorphisms in functor categories admit a short description, too: They diff --git a/src/Cat/Instances/Product/Opposite.lagda.md b/src/Cat/Instances/Product/Opposite.lagda.md new file mode 100644 index 000000000..8ea746955 --- /dev/null +++ b/src/Cat/Instances/Product/Opposite.lagda.md @@ -0,0 +1,46 @@ + + +```agda +module Cat.Instances.Product.Opposite {o₁ h₁ o₂ h₂ : Level} + {C : Precategory o₁ h₁} {D : Precategory o₁ h₁} + where +``` + + + +# Opposite product category {defines="opposite-product-category"} + +As one might expect, taking the [[opposite category]] of a [[product category]] +agrees with the product of opposite categories. Rather than showing +equality we construct an [[isomorphism of precategories]]. + +```agda +×^op : Functor ((C ×ᶜ D)^op) (C ^op ×ᶜ D ^op) +×^op .F₀ x = x +×^op .F₁ f = f +×^op .F-id = refl +×^op .F-∘ f g = refl + +×^op-is-iso : is-precat-iso ×^op +×^op-is-iso = iso has-is-ff has-is-iso where + has-is-ff : Cat.Functor.Properties.is-fully-faithful ×^op + has-is-ff = id-equiv + + has-is-iso : is-equiv (F₀ ×^op) + has-is-iso = id-equiv +```