This repository was archived by the owner on Jun 19, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalyze_reim.py
539 lines (476 loc) · 15.4 KB
/
analyze_reim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
import numpy as np
import pickle
import os
import h5py
import matplotlib
import matplotlib.pyplot as plt
from Analysis.util import (
get_intensity,
get_phase,
re_im_combined,
change_domain_and_adjust_energy,
)
matplotlib.rcParams['pdf.fonttype']=42
def save_figure(save_name, save_format, save_dir):
if save_name is None:
raise ValueError("Save name is not specified")
if "." + save_format not in save_name:
save_name += "." + save_format
if not os.path.exists(save_dir):
os.makedirs(save_dir)
plt.savefig(
os.path.join(save_dir, save_name),
bbox_inches="tight",
dpi=300,
transparent=True,
format=save_format,
)
def intensity_phase_plot(
domains,
fields,
labels,
colors,
domain_type,
xlims=None,
y_label=None,
normalize=False,
offsets=None,
save_format="jpg",
save_name=None,
plot_show=True,
plot_hold=False,
save_dir="",
save=False,
axs=None,
fig=None,
):
"""
Plot intensity and phase of a field
"""
if domain_type == "time":
factor = 1e12
x_label = "time (ps)"
elif domain_type == "wavelength":
factor = 1e9
x_label = "wavelength (nm)"
elif domain_type == "frequency" or domain_type == "freq":
factor = 1e-12
x_label = "frequency (THz)"
# NOTE: Modifying the domains itself will change the original domains in the calling scope!
# Which was causing our problems
factored_domains = [domain * factor for domain in domains]
intensities = [get_intensity(field) for field in fields]
phases = [np.unwrap(get_phase(field)) for field in fields]
y_label_2 = "Phase (rad)"
if axs is None:
fig, axs = plt.subplots(nrows=1, ncols=1, figsize=(6, 4), clear=False)
if normalize:
y_label_1 = "Norm. Intensity (a.u.)"
intensities = [intensity / np.max(intensity) for intensity in intensities]
else:
y_label_1 = "Fluence (J/m^2)"
axs.set_xlabel(x_label)
for i, intensity in enumerate(intensities):
if y_label is None:
y_label_1 = y_label_1
else:
y_label_1 = y_label
if offsets is not None:
offset = offsets[i]
axs.plot(
factored_domains[i],
intensity + offset,
color=colors[i],
label=labels[i],
alpha=0.6,
)
axs.legend()
if xlims is not None:
axs.set_xlim(xlims[0], xlims[1])
axs.set_ylabel(y_label_1, color="black")
axs2 = axs.twinx()
for i in range(len(phases)):
axs2.plot(
factored_domains[i],
phases[i],
color=colors[i],
linestyle="dashed",
alpha=0.6,
)
axs2.set_ylabel(y_label_2, color="black")
if save:
save_figure(save_name, save_format, save_dir)
return fig
def plot_a_bunch_of_fields(
freq_vectors_sfg_list,
fields_sfg_list,
freq_vectors_shg1_list,
fields_shg1_list,
freq_vectors_shg2_list,
fields_shg2_list,
sfg_time_vector_list,
sfg_freq_to_time_list,
shg1_time_vector_list,
shg1_freq_to_time_list,
shg2_time_vector_list,
shg2_freq_to_time_list,
labels_list,
colors_list,
model_save_name,
fig_save_dir,
file_save_name=None,
normalize=False,
):
nrows = 2
ncols = 3
plt.figure()
new_fig, new_axs = plt.subplots(nrows=nrows, ncols=ncols, figsize=(30, 15))
# Flatten the array of axes if it's 2D
if nrows > 1 and ncols > 1:
new_axs = new_axs.flatten()
else: # 1D array of axes
new_axs = new_axs.reshape(-1)
print("------- True vs Prediction Frequency Domain --------")
print("*** SFG ***")
fig_pfg4 = intensity_phase_plot(
freq_vectors_sfg_list,
fields_sfg_list,
labels_list,
colors_list,
"freq",
normalize=normalize,
offsets=[0, 0],
save_format="jpg",
save_name=model_save_name + "_pfg4.jpg",
plot_show=True,
plot_hold=False,
save_dir=fig_save_dir,
axs=new_axs[0],
)
print("*** SHG1 ***")
fig_pfg5 = intensity_phase_plot(
freq_vectors_shg1_list,
fields_shg1_list,
labels_list,
colors_list,
"freq",
normalize=normalize,
offsets=[0, 0],
save_format="jpg",
save_name=model_save_name + "_pfg5.jpg",
plot_show=True,
plot_hold=False,
save_dir=fig_save_dir,
axs=new_axs[1],
)
print("*** SHG2 ***")
fig_pfg6 = intensity_phase_plot(
freq_vectors_shg2_list,
fields_shg2_list,
labels_list,
colors_list,
"freq",
normalize=normalize,
offsets=[0, 0],
save_format="jpg",
save_name=model_save_name + "_pfg6.jpg",
plot_show=True,
plot_hold=False,
save_dir=fig_save_dir,
axs=new_axs[2],
)
print("------- True vs Prediction Time Domain --------")
print("*** SFG ***")
fig_ptd4 = intensity_phase_plot(
sfg_time_vector_list,
sfg_freq_to_time_list,
labels_list,
colors_list,
"time",
xlims=[-15, 15],
normalize=normalize,
offsets=[0, 0],
save_format="jpg",
save_name=model_save_name + "_ptd4.jpg",
plot_show=True,
plot_hold=False,
save_dir=fig_save_dir,
axs=new_axs[3],
)
print("*** SHG1 ***")
fig_ptd5 = intensity_phase_plot(
shg1_time_vector_list,
shg1_freq_to_time_list,
labels_list,
colors_list,
"time",
normalize=normalize,
offsets=[0, 0],
save_format="jpg",
save_name=model_save_name + "_ptd5.jpg",
plot_show=True,
plot_hold=False,
save_dir=fig_save_dir,
axs=new_axs[4],
)
print("*** SHG2 ***")
fig_ptd6 = intensity_phase_plot(
shg2_time_vector_list,
shg2_freq_to_time_list,
labels_list,
colors_list,
"time",
normalize=normalize,
offsets=[0, 0],
save_format="jpg",
save_name=model_save_name + "_ptd6.jpg",
plot_show=True,
plot_hold=False,
save_dir=fig_save_dir,
axs=new_axs[5],
)
new_fig.tight_layout()
plt.show()
file_save_name = (
file_save_name
or model_save_name + f"_All_{'normalized' if normalize else 'orig'}.jpg"
)
save_figure(file_save_name, "pdf", fig_save_dir)
# save_figure(file_save_name, "jpg", fig_save_dir)
def do_analysis(
output_dir: str, # directory from model training
data_directory: str, # directory from preprocessing
model_save_name: str, # model name from training
file_idx: int, # on which file to do analysis
item_idx: int, # which example of the file to do analysis
fig_save_dir: str = None, # where to save the figures
crystal_length: int = 100, # length of the crystal
y_pred_trans_item: np.ndarray = None,
y_true_trans_item: np.ndarray = None,
file_save_name: str = None,
return_vals: bool = False,
labels_list: list = None,
):
if fig_save_dir is None:
fig_save_dir = os.path.join(
model_save_name, f"figures_file{file_idx}_item{item_idx}"
)
# Loading files for scaling
with open(
os.path.join(data_directory, "scaler.pkl"), "rb"
) as file: # can use scaler.pkl or scaler_bckkup.pkl
scaler = pickle.load(file)
freq_vectors_shg1 = np.load("Data/shg_freq_domain_ds.npy")
freq_vectors_shg2 = freq_vectors_shg1 # these are equivalent here
freq_vectors_sfg = np.load("Data/sfg_freq_domain_ds.npy")
domain_spacing_1 = (
freq_vectors_shg1[1] - freq_vectors_shg1[0]
) # * 1e12 # scaled to be back in Hz
domain_spacing_2 = freq_vectors_shg2[1] - freq_vectors_shg2[0] # * 1e12
domain_spacing_3 = freq_vectors_sfg[1] - freq_vectors_sfg[0] # * 1e12
factors_freq = {
"beam_area": 400e-6**2 * np.pi,
"grid_spacing": [domain_spacing_1, domain_spacing_2, domain_spacing_3],
"domain_spacing_1": domain_spacing_1,
"domain_spacing_2": domain_spacing_2,
"domain_spacing_3": domain_spacing_3,
} # beam radius 400 um (and circular beam)
sfg_original_freq = np.load("Data/sfg_original_freq_vector.npy")
sfg_original_time = np.load("Data/sfg_original_time_vector.npy")
sfg_original_time_ds = sfg_original_time[1] - sfg_original_time[0]
# Loading the single file out of the test dataset
# these are used to compare to the predictions
if y_true_trans_item is None:
with h5py.File(os.path.join(data_directory, "y_new_data.h5"), "r") as file:
dataset = file[f"dataset_{file_idx}"]
# get all the data from the file
y_true = dataset[:]
# then scale it back to the original values
y_true = scaler.inverse_transform(y_true)
# Get the transformed value of the real item in the dataset
# The first part slices out everything before the output of the first crystal,
# then it jumps at iterations of the size of crystal_length to get the output
# of the next crystal, then it selects one of those outputs in there.
y_true_trans_all = y_true[crystal_length - 1 :][::crystal_length]
y_true_trans_item = y_true_trans_all[item_idx]
else:
y_true_trans_item = y_true_trans_item[None, :]
y_true_trans_item = scaler.inverse_transform(y_true_trans_item)
y_true_trans_item = y_true_trans_item.squeeze()
### The part where we load the predictions
if y_pred_trans_item is None:
# the output file from the "predict" function
# this has a shape of (files, predictions, channels)
with h5py.File(
os.path.join(output_dir, f"{model_save_name}_all_preds.h5"), "r"
) as file:
y_preds = file[f"dataset_{file_idx}"]
y_preds_loaded = y_preds[:]
y_preds_trans = scaler.inverse_transform(y_preds_loaded)
# Transform this using the scaler, then get which file
# and then get the example using its index
y_pred_trans_item = y_preds_trans[item_idx]
else:
y_pred_trans_item = y_pred_trans_item[None, :]
y_pred_trans_item = scaler.inverse_transform(y_pred_trans_item)
y_pred_trans_item = y_pred_trans_item.squeeze()
# combine the vectors into a complex vector
y_pred_trans_shg1, y_pred_trans_shg2, y_pred_trans_sfg = re_im_combined(
y_pred_trans_item
)
y_true_trans_shg1, y_true_trans_shg2, y_true_trans_sfg = re_im_combined(
y_true_trans_item
)
(
sfg_freq_to_time_direct_pred,
sfg_freq_to_time_pred,
) = change_domain_and_adjust_energy(
freq_vectors_sfg,
y_pred_trans_sfg,
sfg_original_freq,
"freq",
beam_area=factors_freq["beam_area"],
domain_spacing=domain_spacing_3,
true_domain_spacing=sfg_original_time_ds,
)
(
sfg_freq_to_time_direct_true,
sfg_freq_to_time_true,
) = change_domain_and_adjust_energy(
freq_vectors_sfg,
y_true_trans_sfg,
sfg_original_freq,
"freq",
beam_area=factors_freq["beam_area"],
domain_spacing=domain_spacing_3,
true_domain_spacing=sfg_original_time_ds,
)
(
shg1_freq_to_time_direct_pred,
shg1_freq_to_time_pred,
) = change_domain_and_adjust_energy(
freq_vectors_shg1,
y_pred_trans_shg1,
sfg_original_freq,
"freq",
beam_area=factors_freq["beam_area"],
domain_spacing=domain_spacing_1,
true_domain_spacing=sfg_original_time_ds,
)
(
shg1_freq_to_time_direct_true,
shg1_freq_to_time_true,
) = change_domain_and_adjust_energy(
freq_vectors_shg1,
y_true_trans_shg1,
sfg_original_freq,
"freq",
beam_area=factors_freq["beam_area"],
domain_spacing=domain_spacing_1,
true_domain_spacing=sfg_original_time_ds,
)
(
shg2_freq_to_time_direct_pred,
shg2_freq_to_time_pred,
) = change_domain_and_adjust_energy(
freq_vectors_shg2,
y_pred_trans_shg2,
sfg_original_freq,
"freq",
beam_area=factors_freq["beam_area"],
domain_spacing=domain_spacing_2,
true_domain_spacing=sfg_original_time_ds,
)
(
shg2_freq_to_time_direct_true,
shg2_freq_to_time_true,
) = change_domain_and_adjust_energy(
freq_vectors_shg2,
y_true_trans_shg2,
sfg_original_freq,
"freq",
beam_area=factors_freq["beam_area"],
domain_spacing=domain_spacing_2,
true_domain_spacing=sfg_original_time_ds,
)
if return_vals == True or return_vals == 1:
return (
sfg_freq_to_time_true,
sfg_freq_to_time_pred,
shg1_freq_to_time_true,
shg1_freq_to_time_pred,
shg2_freq_to_time_true,
shg2_freq_to_time_pred,
)
elif return_vals == 2:
return (
y_true_trans_sfg,
y_pred_trans_sfg,
y_true_trans_shg1,
y_pred_trans_shg1,
y_true_trans_shg2,
y_pred_trans_shg2
)
else:
pass
# required lists for plotting the frequency domain
freq_vectors_sfg_list = [freq_vectors_sfg, freq_vectors_sfg]
freq_vectors_shg1_list = [freq_vectors_shg1, freq_vectors_shg1]
freq_vectors_shg2_list = [freq_vectors_shg2, freq_vectors_shg2]
fields_sfg_list = [y_true_trans_sfg, y_pred_trans_sfg]
fields_shg1_list = [y_true_trans_shg1, y_pred_trans_shg1]
fields_shg2_list = [y_true_trans_shg2, y_pred_trans_shg2]
# required lists for plotting the time domain
sfg_time_vector_list = [sfg_original_time, sfg_original_time]
shg1_time_vector_list = [sfg_original_time, sfg_original_time]
shg2_time_vector_list = [sfg_original_time, sfg_original_time]
sfg_freq_to_time_list = [sfg_freq_to_time_true, sfg_freq_to_time_pred]
shg1_freq_to_time_list = [shg1_freq_to_time_true, shg1_freq_to_time_pred]
shg2_freq_to_time_list = [shg2_freq_to_time_true, shg2_freq_to_time_pred]
colors_list = ["red", "black"]
if labels_list is None:
labels_list = ["true", "pred"]
print("Normalized plots")
# Draw normalized plots
plot_a_bunch_of_fields(
freq_vectors_sfg_list,
fields_sfg_list,
freq_vectors_shg1_list,
fields_shg1_list,
freq_vectors_shg2_list,
fields_shg2_list,
sfg_time_vector_list,
sfg_freq_to_time_list,
shg1_time_vector_list,
shg1_freq_to_time_list,
shg2_time_vector_list,
shg2_freq_to_time_list,
labels_list,
colors_list,
model_save_name,
fig_save_dir,
file_save_name=file_save_name,
normalize=True,
)
print("Original plots")
# Draw non-normalized plots
plot_a_bunch_of_fields(
freq_vectors_sfg_list,
fields_sfg_list,
freq_vectors_shg1_list,
fields_shg1_list,
freq_vectors_shg2_list,
fields_shg2_list,
sfg_time_vector_list,
sfg_freq_to_time_list,
shg1_time_vector_list,
shg1_freq_to_time_list,
shg2_time_vector_list,
shg2_freq_to_time_list,
labels_list,
colors_list,
model_save_name,
fig_save_dir,
file_save_name=file_save_name,
normalize=False,
)