-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathweighted_generalized_mean_test.go
302 lines (284 loc) · 7.38 KB
/
weighted_generalized_mean_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
package statistics
import (
"fmt"
"math"
"testing"
)
func ExampleWeightedGeneralizedMean() {
X := []uint8{8, 7, 3, 2, 6, 11, 6, 7, 2, 1, 7}
W := []uint8{1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2}
mean, _ := WeightedGeneralizedMean(X, W, 1)
fmt.Printf("The 1st weighted generalized mean of %v with weights of %v is %.1f.\n", X, W, mean)
// Output:
// The 1st weighted generalized mean of [8 7 3 2 6 11 6 7 2 1 7] with weights of [1 2 1 1 2 1 2 1 2 1 2] is 5.5.
}
func TestWeightedGeneralizedMean(t *testing.T) {
cases := []struct {
name string
input any
weights any
exponent float64
expected string
}{
{
name: "not same length inputs",
input: []float64{1000},
weights: []float64{1, 0.5},
exponent: 1,
expected: "float64 0 x and w are not the same lengths",
},
{
name: "empty inputs",
input: []float64{},
weights: []float64{},
exponent: 1,
expected: "float64 0 x must have at least 1 element",
},
{
name: "minimum",
input: []float64{1000, 1},
weights: []float64{1, 0.5},
exponent: math.Inf(-1),
expected: "float64 0.5 <nil>",
},
{
name: "minimum with NaN",
input: []float64{1, math.NaN()},
weights: []float64{0.5, 1},
exponent: math.Inf(-1),
expected: "float64 NaN <nil>",
},
{
name: "harmonic mean",
input: []float64{1, 1000},
weights: []float64{1, 1},
exponent: -1,
expected: "float64 1.9980019980019983 <nil>",
},
{
name: "geometric mean",
input: []float64{1, 1000},
weights: []float64{1, 1},
exponent: 0,
expected: "float64 31.622776601683793 <nil>",
},
{
name: "geometric mean with NaN",
input: []float64{1, math.NaN()},
weights: []float64{1, 1},
exponent: 0,
expected: "float64 NaN <nil>",
},
{
name: "quadratic mean",
input: []float64{1, 1000},
weights: []float64{1, 1},
exponent: 2,
expected: "float64 707.1071347398497 <nil>",
},
{
name: "cubic mean",
input: []float64{1, 1000},
weights: []float64{1, 1},
exponent: 3,
expected: "float64 793.7005262486666 <nil>",
},
{
name: "maximum",
input: []float64{1, 1000},
weights: []float64{1, 2},
exponent: math.Inf(+1),
expected: "float64 2000 <nil>",
},
{
name: "maximum with NaN",
input: []float64{1, math.NaN()},
weights: []float64{1, 2},
exponent: math.Inf(+1),
expected: "float64 NaN <nil>",
},
}
for _, c := range cases {
c := c
t.Run(c.name, func(t *testing.T) {
t.Parallel()
actual, err := WeightedGeneralizedMean(c.input.([]float64), c.weights.([]float64), c.exponent)
if actual := fmt.Sprintf("%T %v %v", actual, actual, err); actual != c.expected {
t.Logf("expected %v, got %v", c.expected, actual)
t.FailNow()
}
})
}
}
func TestWeightedPowerMean(t *testing.T) {
cases := []struct {
name string
input any
weights any
exponent float64
expected string
}{
{
name: "quadratic mean",
input: []float64{1, 1000},
weights: []float64{1, 1},
exponent: 2,
expected: "float64 707.1071347398497 <nil>",
},
}
for _, c := range cases {
c := c
t.Run(c.name, func(t *testing.T) {
t.Parallel()
actual, err := WeightedGeneralizedMean(c.input.([]float64), c.weights.([]float64), c.exponent)
if actual := fmt.Sprintf("%T %v %v", actual, actual, err); actual != c.expected {
t.Logf("expected %v, got %v", c.expected, actual)
t.FailNow()
}
})
}
}
func ExampleWeightedMean() {
X := []uint8{8, 7, 3, 2, 6, 11, 6, 7, 2, 1, 7}
W := []uint8{1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2}
mean, _ := WeightedMean(X, W)
fmt.Printf("The weighted mean of %v with weights of %v is %.1f.\n", X, W, mean)
// Output:
// The weighted mean of [8 7 3 2 6 11 6 7 2 1 7] with weights of [1 2 1 1 2 1 2 1 2 1 2] is 5.5.
}
func TestWeightedMean(t *testing.T) {
cases := []struct {
name string
input any
weights any
expected string
}{
{
name: "not same length inputs",
input: []float64{1000},
weights: []float64{1, 0.5},
expected: "float64 0 x and w are not the same lengths",
},
{
name: "empty inputs",
input: []float64{},
weights: []float64{},
expected: "float64 0 x must have at least 1 element",
},
{
name: "test 1",
input: []float64{1, 1000},
weights: []float64{1, 2},
expected: "float64 667 <nil>",
},
}
for _, c := range cases {
c := c
t.Run(c.name, func(t *testing.T) {
t.Parallel()
var actual interface{}
var err error
actual, err = WeightedMean(c.input.([]float64), c.weights.([]float64))
if actual := fmt.Sprintf("%T %v %v", actual, actual, err); actual != c.expected {
t.Logf("expected %v, got %v", c.expected, actual)
t.FailNow()
}
})
}
}
func ExampleWeightedGeometricMean() {
X := []uint8{8, 7, 3, 2, 6, 11, 6, 7, 2, 1, 7}
W := []uint8{1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2}
mean, _ := WeightedGeometricMean(X, W)
fmt.Printf("The weighted geometric mean of %v with weights of %v is %.1f.\n", X, W, mean)
// Output:
// The weighted geometric mean of [8 7 3 2 6 11 6 7 2 1 7] with weights of [1 2 1 1 2 1 2 1 2 1 2] is 4.6.
}
func TestWeightedGeometricMean(t *testing.T) {
cases := []struct {
name string
input any
weights any
expected string
}{
{
name: "not same length inputs",
input: []float64{1000},
weights: []float64{1, 0.5},
expected: "float64 0 x and w are not the same lengths",
},
{
name: "empty inputs",
input: []float64{},
weights: []float64{},
expected: "float64 0 x must have at least 1 element",
},
{
name: "test 1",
input: []float64{1, 1000},
weights: []float64{1, 2},
expected: "float64 99.99999999999996 <nil>",
},
}
for _, c := range cases {
c := c
t.Run(c.name, func(t *testing.T) {
t.Parallel()
var actual interface{}
var err error
actual, err = WeightedGeometricMean(c.input.([]float64), c.weights.([]float64))
if actual := fmt.Sprintf("%T %v %v", actual, actual, err); actual != c.expected {
t.Logf("expected %v, got %v", c.expected, actual)
t.FailNow()
}
})
}
}
func ExampleWeightedHarmonicMean() {
X := []uint8{8, 7, 3, 2, 6, 11, 6, 7, 2, 1, 7}
W := []uint8{1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2}
mean, _ := WeightedHarmonicMean(X, W)
fmt.Printf("The weighted harmonic mean of %v with weights of %v is %.1f.\n", X, W, mean)
// Output:
// The weighted harmonic mean of [8 7 3 2 6 11 6 7 2 1 7] with weights of [1 2 1 1 2 1 2 1 2 1 2] is 5.8.
}
func TestWeightedHarmonicMean(t *testing.T) {
cases := []struct {
name string
input any
weights any
expected string
}{
{
name: "not same length inputs",
input: []float64{1000},
weights: []float64{1, 0.5},
expected: "float64 0 x and w are not the same lengths",
},
{
name: "empty inputs",
input: []float64{},
weights: []float64{},
expected: "float64 0 x must have at least 1 element",
},
{
name: "test 1",
input: []float64{1, 1000},
weights: []float64{1, 2},
expected: "float64 2.9985007496251876 <nil>",
},
}
for _, c := range cases {
c := c
t.Run(c.name, func(t *testing.T) {
t.Parallel()
var actual interface{}
var err error
actual, err = WeightedHarmonicMean(c.input.([]float64), c.weights.([]float64))
if actual := fmt.Sprintf("%T %v %v", actual, actual, err); actual != c.expected {
t.Logf("expected %v, got %v", c.expected, actual)
t.FailNow()
}
})
}
}