Skip to content

Commit 5a7a8a9

Browse files
committed
improved glossary and bibliography
1 parent 6a6d168 commit 5a7a8a9

File tree

8 files changed

+100
-40
lines changed

8 files changed

+100
-40
lines changed

bibliography/bibliography.bib

+54-8
Original file line numberDiff line numberDiff line change
@@ -84,6 +84,7 @@ @string { a_dubourg_vincent
8484
@string { a_duchesnay_edouard = "Edouard Duchesnay" }
8585
@string { a_editors_of_encyclopaedia_britannica = "The Editors of Encyclopaedia Britannica" }
8686
@string { a_eglen_stephen_j = "Stephen J.\ Eglen" }
87+
@string { a_euler_leonhard = "Leonhard Euler" }
8788
@string { a_fang_lu = "Lu Fang" }
8889
@string { a_feng_yu = "Yu Feng" }
8990
@string { a_fernandez_del_rio_jaime = "Jaime {Fern{\'a}ndez del R{\'i}o}" }
@@ -282,6 +283,8 @@ @string { a_wiebe_mark
282283
@string { a_wieser_eric = "Eric Wieser" }
283284
@string { a_wilson_joshua = "Joshua Wilson" }
284285
@string { a_wu_zhize = "Zhize Wu" }
286+
@string { a_wyman_bostwick_f = "Bostwick F.\ Wyman" }
287+
@string { a_wyman_myra_f = "Myra F.\ Wyman" }
285288
@string { a_xiong_peng = "Peng Xiong" }
286289
@string { a_yanev_martin = "Martin Yanev" }
287290
@string { a_yang_edward_z = "Edward Z.\ Yang" }
@@ -306,6 +309,7 @@ @string { l_germany_wadern
306309
@string { l_iceland_reykjavik = "{{Reykjav{\'i}k}, {Iceland}}" }
307310
@string { l_india_noida = "{{Noida}, {Uttar Pradesh}, {India}}" }
308311
@string { l_portugal_lisbon = "{{Lisbon}, {Portugal}}" }
312+
@string { l_russia_petropolis = "{{Petropolis} {(St.~Petersburg)}, {Russia}}" }
309313
@string { l_spain_leioa = "{{Leioa}, {Bizkaia}, {Spain}}" }
310314
@string { l_switzerland_cham = "{{Cham}, {Switzerland}}" }
311315
@string { l_switzerland_geneva = "{{Geneva}, {Switzerland}}" }
@@ -389,6 +393,7 @@ @string { p_springer_new_york
389393
@string { p_springer_science_and_business = "{Springer Science+Business Media}" }
390394
@string { p_taylor_and_francis = "{Taylor and Francis Ltd.}" }
391395
@string { p_teubner_b_g = "{B.\ G.\ Teubner}" }
396+
@string { p_typis_academiae = "{Typis Academiae}" }
392397
@string { p_unicode_consortium = "{The Unicode Consortium}" }
393398
@string { p_universidad_del_pais_vasco = "{{Universidad del Pa{\'i}s Vasco} / {Euskal Herriko Unibertsitatea}}" }
394399
@string { p_university_of_south_carolina = "{University of South Carolina}" }
@@ -444,6 +449,7 @@ @string { pa_springer_new_york
444449
@string { pa_springer_science_and_business = l_usa_new_york }
445450
@string { pa_taylor_and_francis = l_uk_london }
446451
@string { pa_teubner_b_g = l_germany_leipzig }
452+
@string { pa_typis_academiae = l_russia_petropolis }
447453
@string { pa_unicode_consortium = l_usa_south_san_francisco }
448454
@string { pa_universidad_del_pais_vasco = l_spain_leioa }
449455
@string { pa_university_of_south_carolina = l_usa_columbia }
@@ -483,6 +489,12 @@ @xdata{j_ca
483489
issn = {0001-0782},
484490
}
485491

492+
@xdata{j_casp,
493+
journal = {Commentarii Academiae Scientiarum Petropolitanae},
494+
publisher = p_typis_academiae,
495+
address = pa_typis_academiae
496+
}
497+
486498
@xdata{j_csae,
487499
journal = {Computing in Science \& Engineering},
488500
issn = {1521-9615},
@@ -525,6 +537,13 @@ @xdata{j_mm
525537
issn = {0025-570X},
526538
}
527539

540+
@xdata{j_mst,
541+
journal = {Mathematical Systems Theory},
542+
issn = {1432-4350},
543+
publisher = p_springer_science_and_business,
544+
address = pa_springer_science_and_business,
545+
}
546+
528547
@xdata{j_n,
529548
journal = {Nature},
530549
issn = {0028-0836},
@@ -687,7 +706,7 @@ @book{APM1991AAAFI
687706
}
688707

689708
@inbook{APM1991TOEAP,
690-
title = {Transcendence of~$e$ and~$\pi$},
709+
title = {Transcendence of~\numberE\ and~\numberPi},
691710
crossref = {APM1991AAAFI},
692711
chapter = {9},
693712
pages = {115--161},
@@ -796,7 +815,7 @@ @techreport{BB2019AEAOTPPIP
796815
url = {https://arxiv.org/abs/1907.11073},
797816
urldate = {2024-08-17},
798817
doi = {10.48550/arXiv.1907.11073},
799-
note = {\mbox{arXiv:1907.11073v2} \mbox{[cs.SE]} \mbox{26~Jul~2019}}
818+
addendum = {\mbox{arXiv:1907.11073v2} \mbox{[cs.SE]} \mbox{26~Jul~2019}}
800819
}
801820

802821
@book{BHK2006CNFCMEARFCS,
@@ -929,6 +948,33 @@ @book{DBvR2024ITN
929948
isbn = {9781836208631},
930949
}
931950

951+
@article{E1737DFCD,
952+
author = a_euler_leonhard,
953+
title = {De Fractionibus Continuis Dissertation},
954+
date = {1737/1744},
955+
xdata = {j_casp},
956+
volume = {9},
957+
pages = {98--137},
958+
url = {https://scholarlycommons.pacific.edu/cgi/viewcontent.cgi?article=1070},
959+
urldate = {2024-09-24},
960+
addendum = {See \cite{E1985AEOCF} for a translation.}
961+
}
962+
963+
@article{E1985AEOCF,
964+
author = a_euler_leonhard,
965+
translator = a_wyman_myra_f # and # a_wyman_bostwick_f,
966+
title = {An Essay on Continued Fractions},
967+
xdata = {j_mst},
968+
volume = {18},
969+
pages = {295--328},
970+
number = {1},
971+
date = {1985-12},
972+
doi = {10.1007/BF01699475},
973+
url = {https://www.researchgate.net/publication/301720080},
974+
urldate = {2024-09-24},
975+
addendum = {Translation of of \cite{E1737DFCD}.},
976+
}
977+
932978
@incollection{EOEBSRGML2024LY,
933979
author = a_editors_of_encyclopaedia_britannica # and # a_setia_veenu # and # a_rodriguez_emily # and # a_gaur_aakanksha # and # a_matthias_meg # and # a_lotha_gloria,
934980
title = {Leap Year},
@@ -941,7 +987,7 @@ @incollection{EOEBSRGML2024LY
941987
@inbook{F2011TTOEAP,
942988
author = a_filaseta_michael,
943989
booktitle = {Math~785: Transcendental Number Theory},
944-
title = {The Transcendence of~$e$ and~$\pi$},
990+
title = {The Transcendence of~\numberE\ and~\numberPi},
945991
chapter = {6},
946992
date = {2011-21},
947993
publisher = p_university_of_south_carolina,
@@ -1200,7 +1246,7 @@ @book{M2022RAEFPLACFWIR
12001246

12011247
@article{N1939TTOP,
12021248
author = a_niven_ivan,
1203-
title = {The Transcendence of~$\pi$},
1249+
title = {The Transcendence of~\numberPi},
12041250
xdata = {j_tamm},
12051251
volume = {46},
12061252
number = {8},
@@ -1515,7 +1561,7 @@ @book{PTVF2007NRTAOSC
15151561
title = {Numerical Recipes: The Art of Scientific Computing},
15161562
edition = {3},
15171563
date = {2007/2011},
1518-
note = {Version~3.04},
1564+
addendum = {Version~3.04},
15191565
publisher = p_cambridge_uni_press_ass,
15201566
address = pa_cambridge_uni_press_ass,
15211567
isbn = {978-0-521-88068-8},
@@ -1538,7 +1584,7 @@ @book{R1994PNACMFF
15381584
title = {Prime Numbers and Computer Methods for Factorization},
15391585
xdata = {ser_pm},
15401586
doi = {10.1007/978-1-4612-0251-6},
1541-
imprint = pa_birkhauser_boston # {:~} # p_birkhauser_boston,
1587+
addendum = pa_birkhauser_boston # {:~} # p_birkhauser_boston,
15421588
isbn = {978-0-8176-3743-9},
15431589
date = {1994-10-01/2012-09-30},
15441590
edition = {2}
@@ -1713,7 +1759,7 @@ @article{VGOHRCBPWBvdWBWMMNJKLCPFMVLPCHQHARPvMS2020SFAFSCIP
17131759
doi = {10.1038/s41592-019-0686-2},
17141760
url = {http://arxiv.org/abs/1907.10121},
17151761
urldate = {2024-06-26},
1716-
note = {See also \mbox{arXiv:1907.10121v1} \mbox{[cs.MS]} \mbox{23 Jul 2019}.}
1762+
addendum = {See also \mbox{arXiv:1907.10121v1} \mbox{[cs.MS]} \mbox{23 Jul 2019}.}
17171763
}
17181764

17191765
@book{VHN2023HOADWP,
@@ -1796,5 +1842,5 @@ @techreport{Z2024DESIEWS
17961842
url = {https://arxiv.org/abs/2405.01562},
17971843
urldate = {2024-06-27},
17981844
doi = {10.48550/ARXIV.2405.01562},
1799-
note = {\mbox{arXiv:2405.01562v1} \mbox{[cs.MS]} \mbox{3 Apr 2024}}
1845+
addendum = {\mbox{arXiv:2405.01562v1} \mbox{[cs.MS]} \mbox{3 Apr 2024}}
18001846
}

notation/math.sty

+18-9
Original file line numberDiff line numberDiff line change
@@ -9,25 +9,25 @@ It holds that~$\naturalNumbersZ\subset\integerNumbers$%
99
}%
1010
\newSymbol{naturalNumbersO}{\ensuremath{\mathSpace{N}_1}}{N1}{%
1111
the set of the natural numbers \emph{excluding}~0, i.e., 1, 2, 3, 4, and so on. %
12-
It holds that~$\naturalNumbersO\subset\integerNumbers$}%
13-
%
12+
It holds that~$\naturalNumbersO\subset\integerNumbers$%
13+
}%
1414
\newSymbol{integerNumbers}{\ensuremath{\mathSpace{Z}}}{Z}{%
1515
the set of the integers numbers including positive and negative numbers and~0, i.e., {\dots}, -3, -2, -1, 0, 1, 2, 3, {\dots}, and so on. %
16-
It holds that~$\integerNumbers\subset\realNumbers$.}%
17-
%
16+
It holds that~$\integerNumbers\subset\realNumbers$%
17+
}%
1818
\newSymbol{realNumbers}{\mathSpace{R}}{R}{the set of the real numbers}%
19-
%
2019
\newSymbol{realNumbersP}{\ensuremath{\mathSpace{R}^+}}{R+}{%
2120
the set of the positive real numbers, i.e., $\mathSpace{R}^+=\{x\in\realNumbers:x>0\}$}%
2221
%
23-
\protected\gdef\intRange#1#2{\ensuremath{#1\pgls{intSetDots}#2}}%
22+
\protected\gdef\intRange#1#2{\ensuremath{#1\gls{intSetDots}#2}}%
2423
\newglossaryentry{intSetDots}{%
2524
type={symbols},
26-
name={..},%
25+
name={$i..j$},%
26+
text={..},%
2727
sort={..},%
2828
description={\sloppy%
29-
The set \mbox{$i..j$} with $i\leq j$ containts all integer numbers in the inclusive range from~$i$ to~$j$. %
30-
For example, \mbox{$5..9$}~is equivalent to~\mbox{$\{5, 6, 7, 8, 9\}$}.}%
29+
with $i,j\in\integerNumbers$ and $i\leq j$ is the set that contains all integer numbers in the inclusive range from~$i$ to~$j$. %
30+
For example, \mbox{$5..9$}~is equivalent to~\mbox{$\{5, 6, 7, 8, 9\}$}}%
3131
}%
3232
%
3333
%
@@ -37,3 +37,12 @@ For example, \mbox{$5..9$}~is equivalent to~\mbox{$\{5, 6, 7, 8, 9\}$}.}%
3737
\mbox{If $f(x)={\mathcal{O}}(g(x))$,} then there exist positive numbers~$x_0\in\realNumbersP$ and~$c\in\realNumbersP$ such that~\mbox{$f(x)\leq c*g(x)\forall x\geq x_0$}~\cite{B1894DAZDVPB,L1909HDLVDVDP}. %
3838
In other words, ${\mathcal{O}}(g(x))$~describes an upper bound for function growth}%
3939
%
40+
\newSymbol{numberPi}{\ensuremath{\pi}}{$\pi$}{%
41+
is the ratio of the circumference~$U$ of a circle and its diameter~$d$, i.e., $\pi=U/d$. %
42+
$\pi\in\realNumbers$ is an irrational and transcendental number~\cite{N1939TTOP,APM1991TOEAP,F2011TTOEAP}, which is approximately~$\pi\approx3.141\decSep592\decSep653\decSep589\decSep793\decSep238\decSep462\decSep643$. %
43+
In \python, it is provided by the \pythonilIdx{math} module as constant \pythonilIdx{pi} with value~\pythonilIdx{3.141592653589793}}%
44+
%
45+
\newSymbol{numberE}{\ensuremath{e}}{e}{%
46+
is Euler's number~\cite{E1737DFCD,E1985AEOCF}, the base of the natural logarithm. %
47+
$e\in\realNumbers$ is an irrational and transcendental number~\cite{APM1991TOEAP,F2011TTOEAP}, which is approximately~$e\approx2.718\decSep281\decSep828\decSep459\decSep045\decSep235\decSep360$. %
48+
In \python, it is provided by the \pythonilIdx{math} module as constant \pythonilIdx{e} with value~\pythonilIdx{2.718281828459045}}%

text/main/basics/collections/summary/summary.tex

+1-1
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@
33
If you have managed to fight your way through the book until this point, then you can already do quite a few things.
44
You can use the computer like a fancy calculator by evaluating numerical expressions, which you learned in
55
\cref{sec:simplyDataTypesAndOperations}.
6-
By utilizing variables as discussed in \cref{sec:variables}, you can realize some simple algorithms like approximating~$\pi$.
6+
By utilizing variables as discussed in \cref{sec:variables}, you can realize some simple algorithms like approximating~\numberPi.
77
In this section, you learned about compound datastructures that can store multiple values.
88
You learned about mutable and immutable sequences of values, namely lists and tuples.
99
You also learned that \python\ offers you the mathematical notion of sets as well as dictionaries, which are key-value mappings.

text/main/basics/simpleDataTypesAndOperations/float/float.tex

+8-8
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@
88
\begin{sloppypar}%
99
In an ideal world, we would have a similar feature also for real numbers.
1010
However, such a thing cannot be practically implemented.
11-
You will certainly remember the numbers $\pi\approx3.141\decSep592\decSep653\decSep590\dots$ and $e\approx2.718\decSep281\decSep828\decSep459\dots$ from highschool maths.
11+
You will certainly remember the numbers $\numberPi\approx3.141\decSep592\decSep653\decSep590\dots$ and $e\approx2.718\decSep281\decSep828\decSep459\dots$ from highschool maths.
1212
They are transcendental~\cite{N1939TTOP,APM1991TOEAP,F2011TTOEAP}, i.e., their fractional digits never end and nobody has yet detected an orderly pattern in them.
1313
Since these numbers are \inQuotes{infinitely long,} we would require infinitely much memory to store them \emph{if} we wanted to represent them \emph{exactly}.
1414
So we don't and neither does \python.
@@ -112,24 +112,24 @@
112112
We always need to keep this in mind.%
113113
\end{sloppypar}%
114114
%
115-
Let us recall our initial example of the transcendental irrational numbers~$\pi$ and~$e$.
115+
Let us recall our initial example of the transcendental irrational numbers~\numberPi\ and~\numberE.
116116
Certainly, these are very important constants that would be used in many computations.
117117
We can make them accessible in our code by importing them from the \pythonilIdx{math} module.\footnote{%
118118
We will learn about these mechanism in detail later on.}
119119
This can be done by typing \pythonil{from math import pi, e}\pythonIdx{import}\pythonIdx{from}\pythonIdx{math}.
120120
When we then type \pythonilIdx{pi} and \pythonilIdx{e}, we can get to see their value in floating point representations: \pythonil{3.141592653589793} and \pythonil{2.718281828459045}, respectively.
121121
Again, these are not the exact values, but they are as close as we can get in this format.
122122

123-
Of course, $\pi$ and~$e$ alone are not that much useful.
123+
Of course, \numberPi\ and~\numberE\ alone are not that much useful.
124124
If you reach back into your highschool days again, you will remember many interesting functions that are related to them.
125125
Let us import a few of them, again from the \pythonilIdx{math} module, via \pythonil{from math import sin, cos, tan, log}\pythonIdx{sin}\pythonIdx{cos}\pythonIdx{tan}\pythonIdx{log}.
126126
I think you can guess what these functions do.
127127

128-
From highschool, you may remember that~$\sin{\frac{\pi}{4}}=\frac{\sqrt{2}}{2}$ and thus~$\sin^2{\frac{\pi}{4}}=0.5$.
128+
From highschool, you may remember that~$\sin{\frac{\numberPi}{4}}=\frac{\sqrt{2}}{2}$ and thus~$\sin^2{\frac{\numberPi}{4}}=0.5$.
129129
Let us compute this in \python\ by doing \pythonil{sin(0.25 * pi) ** 2}\pythonIdx{sin}.
130130
Surprisingly, we get \pythonil{0.4999999999999999} instead of \pythonil{0.5}.
131131
The reason is again the limited precision of \pythonilIdx{float}, which cannot represent~$\frac{\sqrt{2}}{2}$ exactly.
132-
Similarly, $\cos{\frac{\pi}{3}}=\frac{1}{2}$ but \pythonil{cos(pi / 3)}\pythonIdx{cos} yields \pythonil{0.5000000000000001} and $\tan{\frac{\pi}{4}}$ expressed as \pythonil{tan(pi / 4)}\pythonIdx{tan} returns \pythonil{0.9999999999999999} instead of~$1$.
132+
Similarly, $\cos{\frac{\numberPi}{3}}=\frac{1}{2}$ but \pythonil{cos(pi / 3)}\pythonIdx{cos} yields \pythonil{0.5000000000000001} and $\tan{\frac{\numberPi}{4}}$ expressed as \pythonil{tan(pi / 4)}\pythonIdx{tan} returns \pythonil{0.9999999999999999} instead of~$1$.
133133
Then again, these values are incredibly close to the exact results.
134134
They are off by \emph{less than~$10^{-15}$} so for all practical concerns, they are close enough.
135135
Sometimes, we even get the accurate result, e.g., when computing $\ln(e^{10})$ by evaluating \pythonil{log(e ** 10)}\pythonIdx{log}, which results in~\pythonil{10.0}.
@@ -371,8 +371,8 @@
371371
As another example, let us again import the natural logarithm function \pythonilIdx{log} and the Euler's constant~\pythonilIdx{e} from the \pythonilIdx{math} module by doing \pythonil{from math import e, log}\pythonIdx{from}\pythonIdx{math}\pythonIdx{import}.
372372
We now can compute the natural logrithm from the largest possible \pythonilIdx{float} via \pythonil{log(1.7976931348623157e+308)}.
373373
We get \pythonil{709.782712893384}.
374-
Raising~$e$ to this power by doing \pythonil{e ** 709.782712893384} leads to the slightly smaller number~\pythonil{1.7976931348622053e+308} due to the limited precision of the \pythonilIdx{float} type.
375-
However, if we try to raise~$e$ to a slightly larger power, and, for example, try to do \pythonil{e ** 709.782712893385}, we again face an \pythonilIdx{OverflowError}.
374+
Raising~\numberE\ to this power by doing \pythonil{e ** 709.782712893384} leads to the slightly smaller number~\pythonil{1.7976931348622053e+308} due to the limited precision of the \pythonilIdx{float} type.
375+
However, if we try to raise~\numberE\ to a slightly larger power, and, for example, try to do \pythonil{e ** 709.782712893385}, we again face an \pythonilIdx{OverflowError}.
376376

377377
We can also try to divide~1 by the largest \pythonilIdx{float} and do \pythonil{1 / 1.7976931348623157e+308}\pythonIdx{/}.
378378
The result is the very small number \pythonil{5.562684646268003e-309}.
@@ -443,7 +443,7 @@
443443
Very large integer numbers are, however, something of a corner case {\dots} they do not happen often.
444444

445445
Real numbers in~\realNumbers\ are a whole different beast.
446-
They include irrational numbers like~$\sqrt{2}$ and transcendental numbers like~$\pi$.
446+
They include irrational numbers like~$\sqrt{2}$ and transcendental numbers like~\numberPi.
447447
These numbers are needed \emph{often} and they have infinitely many fractional digits.
448448
Thus, there is no way to exactly represent them in computer memory exactly.
449449
Another problem is that we may need both very large numbers like~$10^{300}$ and very small numbery like~$10^{-300}$.

text/main/basics/simpleDataTypesAndOperations/str/str.tex

+1-1
Original file line numberDiff line numberDiff line change
@@ -222,7 +222,7 @@
222222
%
223223
\begin{sloppypar}%
224224
We can also access constants and variables from within the \pgls{fstring}.
225-
Let us again import the constant~$\pi$ from the \pythonilIdx{math} module by doing \pythonil{from math import pi}\pythonIdx{from}\pythonIdx{math}\pythonIdx{import}\pythonIdx{pi}.
225+
Let us again import the constant~\numberPi\ from the \pythonilIdx{math} module by doing \pythonil{from math import pi}\pythonIdx{from}\pythonIdx{math}\pythonIdx{import}\pythonIdx{pi}.
226226
We can print it as string by typing \pythonil{f"pi is approximately \{pi\}."} into the \python\ console.
227227
The result is the string \pythonil{"pi is approximately 3.141592653589793."}%
228228
\end{sloppypar}%

0 commit comments

Comments
 (0)