@@ -201,9 +201,9 @@ def forrester(x: Float[Array, "N 1"]) -> Float[Array, "N 1"]:
201201
202202# %%
203203def return_optimised_posterior (
204- data : gpx .Dataset , prior : gpx .Module , key : Array
205- ) -> gpx .Module :
206- likelihood = gpx .Gaussian (
204+ data : gpx .Dataset , prior : gpx .base . Module , key : Array
205+ ) -> gpx .base . Module :
206+ likelihood = gpx .likelihoods . Gaussian (
207207 num_datapoints = data .n , obs_stddev = jnp .array (1e-3 )
208208 ) # Our function is noise-free, so we set the observation noise's standard deviation to a very small value
209209 likelihood = likelihood .replace_trainable (obs_stddev = False )
@@ -230,7 +230,7 @@ def return_optimised_posterior(
230230
231231mean = gpx .mean_functions .Zero ()
232232kernel = gpx .kernels .Matern52 ()
233- prior = gpx .Prior (mean_function = mean , kernel = kernel )
233+ prior = gpx .gps . Prior (mean_function = mean , kernel = kernel )
234234opt_posterior = return_optimised_posterior (D , prior , key )
235235
236236# %% [markdown]
@@ -315,7 +315,7 @@ def optimise_sample(
315315
316316# %%
317317def plot_bayes_opt (
318- posterior : gpx .Module ,
318+ posterior : gpx .base . Module ,
319319 sample : FunctionalSample ,
320320 dataset : gpx .Dataset ,
321321 queried_x : ScalarFloat ,
@@ -401,7 +401,7 @@ def plot_bayes_opt(
401401 # Generate optimised posterior using previously observed data
402402 mean = gpx .mean_functions .Zero ()
403403 kernel = gpx .kernels .Matern52 ()
404- prior = gpx .Prior (mean_function = mean , kernel = kernel )
404+ prior = gpx .gps . Prior (mean_function = mean , kernel = kernel )
405405 opt_posterior = return_optimised_posterior (D , prior , subkey )
406406
407407 # Draw a sample from the posterior, and find the minimiser of it
@@ -543,7 +543,7 @@ def six_hump_camel(x: Float[Array, "N 2"]) -> Float[Array, "N 1"]:
543543 kernel = gpx .kernels .Matern52 (
544544 active_dims = [0 , 1 ], lengthscale = jnp .array ([1.0 , 1.0 ]), variance = 2.0
545545 )
546- prior = gpx .Prior (mean_function = mean , kernel = kernel )
546+ prior = gpx .gps . Prior (mean_function = mean , kernel = kernel )
547547 opt_posterior = return_optimised_posterior (D , prior , subkey )
548548
549549 # Draw a sample from the posterior, and find the minimiser of it
@@ -561,7 +561,8 @@ def six_hump_camel(x: Float[Array, "N 2"]) -> Float[Array, "N 1"]:
561561 # Evaluate the black-box function at the best point observed so far, and add it to the dataset
562562 y_star = six_hump_camel (x_star )
563563 print (
564- f"BO Iteration: { i + 1 } , Queried Point: { x_star } , Black-Box Function Value: { y_star } "
564+ f"BO Iteration: { i + 1 } , Queried Point: { x_star } , Black-Box Function Value:"
565+ f" { y_star } "
565566 )
566567 D = D + gpx .Dataset (X = x_star , y = y_star )
567568 bo_experiment_results .append (D )
0 commit comments