-
Notifications
You must be signed in to change notification settings - Fork 543
Description
I meet this question. (version: Ubuntu 20.04, cuda=11.8, torch=2.4.0, 915b82d)
Here the command I input in terminal:
python launch.py --config configs/fantasia3d.yaml --train --gpu 0 system.prompt_processor.prompt="hulk" system.geometry.shape_init=mesh:load/shapes/human.obj system.geometry.shape_init_params=0.9 system.geometry.shape_init_mesh_up=+y system.geometry.shape_init_mesh_front=+z
And to print fault message I add these 2 line code in launch.py:
import faulthandler
faulthandler.enable()
Then it print message in terminal as below:
Epoch 0: | | 4540/? [07:57<00:00, 9.51it/s]Fatal Python error: Segmentation fault
Thread 0x00007f57168aa700 (most recent call first):
<no Python frame>
Thread 0x00007f5741fff700 (most recent call first):
File "/home/jane/anaconda3/envs/3s/lib/python3.10/threading.py", line 324 in wait
File "/home/jane/anaconda3/envs/3s/lib/python3.10/threading.py", line 607 in wait
File "/home/jane/anaconda3/envs/3s/lib/python3.10/site-packages/tqdm/_monitor.py", line 60 in run
File "/home/jane/anaconda3/envs/3s/lib/python3.10/threading.py", line 1016 in _bootstrap_inner
File "/home/jane/anaconda3/envs/3s/lib/python3.10/threading.py", line 973 in _bootstrap
Thread 0x00007f58548cf700 (most recent call first):
File "/home/jane/anaconda3/envs/3s/lib/python3.10/threading.py", line 324 in wait
File "/home/jane/anaconda3/envs/3s/lib/python3.10/threading.py", line 607 in wait
File "/home/jane/anaconda3/envs/3s/lib/python3.10/site-packages/tqdm/_monitor.py", line 60 in run
File "/home/jane/anaconda3/envs/3s/lib/python3.10/threading.py", line 1016 in _bootstrap_inner
File "/home/jane/anaconda3/envs/3s/lib/python3.10/threading.py", line 973 in _bootstrap
Thread 0x00007f5864935700 (most recent call first):
File "/home/jane/anaconda3/envs/3s/lib/python3.10/threading.py", line 324 in wait
File "/home/jane/anaconda3/envs/3s/lib/python3.10/queue.py", line 180 in get
File "/home/jane/anaconda3/envs/3s/lib/python3.10/site-packages/tensorboard/summary/writer/event_file_writer.py", line 269 in _run
File "/home/jane/anaconda3/envs/3s/lib/python3.10/site-packages/tensorboard/summary/writer/event_file_writer.py", line 244 in run
File "/home/jane/anaconda3/envs/3s/lib/python3.10/threading.py", line 1016 in _bootstrap_inner
File "/home/jane/anaconda3/envs/3s/lib/python3.10/threading.py", line 973 in _bootstrap
Current thread 0x00007f5ab7804280 (most recent call first):
File "/home/jane/Desktop/threestudio/threestudio/utils/base.py", line 43 in do_update_step_end
File "/home/jane/Desktop/threestudio/threestudio/systems/base.py", line 125 in on_train_batch_end
File "/home/jane/anaconda3/envs/3s/lib/python3.10/site-packages/pytorch_lightning/trainer/call.py", line 167 in _call_lightning_module_hook
File "/home/jane/anaconda3/envs/3s/lib/python3.10/site-packages/pytorch_lightning/loops/training_epoch_loop.py", line 270 in advance
File "/home/jane/anaconda3/envs/3s/lib/python3.10/site-packages/pytorch_lightning/loops/training_epoch_loop.py", line 140 in run
File "/home/jane/anaconda3/envs/3s/lib/python3.10/site-packages/pytorch_lightning/loops/fit_loop.py", line 363 in advance
File "/home/jane/anaconda3/envs/3s/lib/python3.10/site-packages/pytorch_lightning/loops/fit_loop.py", line 205 in run
File "/home/jane/anaconda3/envs/3s/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 1025 in _run_stage
File "/home/jane/anaconda3/envs/3s/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 981 in _run
File "/home/jane/anaconda3/envs/3s/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 574 in _fit_impl
File "/home/jane/anaconda3/envs/3s/lib/python3.10/site-packages/pytorch_lightning/trainer/call.py", line 47 in _call_and_handle_interrupt
File "/home/jane/anaconda3/envs/3s/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 538 in fit
File "/home/jane/Desktop/threestudio/launch.py", line 250 in main
File "/home/jane/Desktop/threestudio/launch.py", line 307 in <module>
Extension modules: numpy.core._multiarray_umath, numpy.core._multiarray_tests, numpy.linalg._umath_linalg, numpy.fft._pocketfft_internal, numpy.random._common, numpy.random.bit_generator, numpy.random._bounded_integers, numpy.random._mt19937, numpy.random.mtrand, numpy.random._philox, numpy.random._pcg64, numpy.random._sfc64, numpy.random._generator, torch._C, torch._C._fft, torch._C._linalg, torch._C._nested, torch._C._nn, torch._C._sparse, torch._C._special, gmpy2.gmpy2, scipy._lib._ccallback_c, scipy.signal._sigtools, scipy.linalg._fblas, scipy.linalg._flapack, scipy.linalg.cython_lapack, scipy.linalg._cythonized_array_utils, scipy.linalg._solve_toeplitz, scipy.linalg._decomp_lu_cython, scipy.linalg._matfuncs_sqrtm_triu, scipy.linalg.cython_blas, scipy.linalg._matfuncs_expm, scipy.linalg._decomp_update, scipy.sparse._sparsetools, _csparsetools, scipy.sparse._csparsetools, scipy.sparse.linalg._dsolve._superlu, scipy.sparse.linalg._eigen.arpack._arpack, scipy.sparse.linalg._propack._spropack, scipy.sparse.linalg._propack._dpropack, scipy.sparse.linalg._propack._cpropack, scipy.sparse.linalg._propack._zpropack, scipy.sparse.csgraph._tools, scipy.sparse.csgraph._shortest_path, scipy.sparse.csgraph._traversal, scipy.sparse.csgraph._min_spanning_tree, scipy.sparse.csgraph._flow, scipy.sparse.csgraph._matching, scipy.sparse.csgraph._reordering, scipy.special._ufuncs_cxx, scipy.special._ufuncs, scipy.special._specfun, scipy.special._comb, scipy.special._ellip_harm_2, scipy._lib._uarray._uarray, scipy.signal._max_len_seq_inner, scipy.signal._upfirdn_apply, scipy.signal._spline, scipy.spatial._ckdtree, scipy._lib.messagestream, scipy.spatial._qhull, scipy.spatial._voronoi, scipy.spatial._distance_wrap, scipy.spatial._hausdorff, scipy.spatial.transform._rotation, scipy.interpolate._fitpack, scipy.interpolate._dfitpack, scipy.optimize._group_columns, scipy.optimize._trlib._trlib, scipy.optimize._lbfgsb, _moduleTNC, scipy.optimize._moduleTNC, scipy.optimize._cobyla, scipy.optimize._slsqp, scipy.optimize._minpack, scipy.optimize._lsq.givens_elimination, scipy.optimize._zeros, scipy.optimize._highs.cython.src._highs_wrapper, scipy.optimize._highs._highs_wrapper, scipy.optimize._highs.cython.src._highs_constants, scipy.optimize._highs._highs_constants, scipy.linalg._interpolative, scipy.optimize._bglu_dense, scipy.optimize._lsap, scipy.optimize._direct, scipy.interpolate._bspl, scipy.interpolate._ppoly, scipy.interpolate.interpnd, scipy.interpolate._rbfinterp_pythran, scipy.interpolate._rgi_cython, scipy.ndimage._nd_image, _ni_label, scipy.ndimage._ni_label, scipy.signal._sosfilt, scipy.signal._spectral, scipy.integrate._odepack, scipy.integrate._quadpack, scipy.integrate._vode, scipy.integrate._dop, scipy.integrate._lsoda, scipy.special.cython_special, scipy.stats._stats, scipy.stats._biasedurn, scipy.stats._levy_stable.levyst, scipy.stats._stats_pythran, scipy.stats._ansari_swilk_statistics, scipy.stats._sobol, scipy.stats._qmc_cy, scipy.stats._mvn, scipy.stats._rcont.rcont, scipy.stats._unuran.unuran_wrapper, scipy.signal._peak_finding_utils, PIL._imaging, kiwisolver._cext, regex._regex, _brotli, yaml._yaml, sentencepiece._sentencepiece, PIL._imagingft, skimage.morphology._misc_cy, skimage.measure._ccomp, _skeletonize_lee_cy, skimage.morphology._skeletonize_lee_cy, skimage.morphology._skeletonize_various_cy, skimage._shared.geometry, skimage.measure._pnpoly, skimage.morphology._convex_hull, skimage.morphology._grayreconstruct, skimage.morphology._extrema_cy, skimage.morphology._flood_fill_cy, skimage.morphology._max_tree, google._upb._message, psutil._psutil_linux, psutil._psutil_posix, lxml._elementpath, lxml.etree, xxhash._xxhash, embreex.rtcore, embreex.rtcore_scene, embreex.mesh_construction, shapely.lib, shapely._geos, shapely._geometry_helpers, mcubes._mcubes, markupsafe._speedups, sklearn.__check_build._check_build, pandas._libs.tslibs.ccalendar, pandas._libs.tslibs.np_datetime, pandas._libs.tslibs.dtypes, pandas._libs.tslibs.base, pandas._libs.tslibs.nattype, pandas._libs.tslibs.timezones, pandas._libs.tslibs.fields, pandas._libs.tslibs.timedeltas, pandas._libs.tslibs.tzconversion, pandas._libs.tslibs.timestamps, pandas._libs.properties, pandas._libs.tslibs.offsets, pandas._libs.tslibs.strptime, pandas._libs.tslibs.parsing, pandas._libs.tslibs.conversion, pandas._libs.tslibs.period, pandas._libs.tslibs.vectorized, pandas._libs.ops_dispatch, pandas._libs.missing, pandas._libs.hashtable, pandas._libs.algos, pandas._libs.interval, pandas._libs.lib, pandas._libs.ops, pandas._libs.hashing, pandas._libs.arrays, pandas._libs.tslib, pandas._libs.sparse, pandas._libs.internals, pandas._libs.indexing, pandas._libs.index, pandas._libs.writers, pandas._libs.join, pandas._libs.window.aggregations, pandas._libs.window.indexers, pandas._libs.reshape, pandas._libs.groupby, pandas._libs.json, pandas._libs.parsers, pandas._libs.testing, sklearn.utils._isfinite, sklearn.utils.sparsefuncs_fast, sklearn.utils.murmurhash, sklearn.utils._openmp_helpers, sklearn.metrics.cluster._expected_mutual_info_fast, sklearn.preprocessing._csr_polynomial_expansion, sklearn.preprocessing._target_encoder_fast, sklearn.metrics._dist_metrics, sklearn.metrics._pairwise_distances_reduction._datasets_pair, sklearn.utils._cython_blas, sklearn.metrics._pairwise_distances_reduction._base, sklearn.metrics._pairwise_distances_reduction._middle_term_computer, sklearn.utils._heap, sklearn.utils._sorting, sklearn.metrics._pairwise_distances_reduction._argkmin, sklearn.metrics._pairwise_distances_reduction._argkmin_classmode, sklearn.utils._vector_sentinel, sklearn.metrics._pairwise_distances_reduction._radius_neighbors, sklearn.metrics._pairwise_distances_reduction._radius_neighbors_classmode, sklearn.metrics._pairwise_fast, sklearn.neighbors._partition_nodes, sklearn.neighbors._ball_tree, sklearn.neighbors._kd_tree, sklearn.utils.arrayfuncs, sklearn.utils._random, sklearn.utils._seq_dataset, sklearn.linear_model._cd_fast, _loss, sklearn._loss._loss, sklearn.svm._liblinear, sklearn.svm._libsvm, sklearn.svm._libsvm_sparse, sklearn.linear_model._sag_fast, sklearn.utils._weight_vector, sklearn.linear_model._sgd_fast, sklearn.decomposition._online_lda_fast, sklearn.decomposition._cdnmf_fast, numba.core.typeconv._typeconv, numba._helperlib, numba._dynfunc, numba._dispatcher, numba.core.runtime._nrt_python, numba.np.ufunc._internal, numba.experimental.jitclass._box (total: 230)
Segmentation fault (core dumped)
So it seems like a fault occur at File "/home/jane/Desktop/threestudio/threestudio/utils/base.py", line 43 in do_update_step_end, this line is:
module = getattr(self, attr)
Sometimes the training process terminates unexpectedly and the system crashes, so I have to force it to shut down. As it has no output message, I cannot figure out what happened.
Finally I have no idea to solve this problem.
Hope someone help me plz... o(╥﹏╥)o