-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcorpus2csv.py
291 lines (230 loc) · 13.4 KB
/
corpus2csv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import argparse
import random
from datetime import timedelta
from operator import getitem
from os import listdir, makedirs, remove
from os.path import join, exists, getsize
import h5py
import librosa
import numpy as np
import pandas as pd
import soundfile as sf
from python_speech_features import mfcc
from scipy.io import wavfile
from tqdm import tqdm
from corpus.corpus import DeepSpeechCorpus
from util.audio_util import distort_audio
from util.corpus_util import get_corpus
from util.log_util import create_args_str
parser = argparse.ArgumentParser(description="""Export speech segments of corpus to CSV files and synthesize data""")
parser.add_argument('-id', type=str, required=True,
help='target-ID for processed files')
parser.add_argument('-s', '--source_dir', type=str, required=True,
help='id of corpus or path to corpus to export')
parser.add_argument('-t', '--target_dir', type=str, required=True,
help='target directory to save results')
parser.add_argument('-l', '--language', type=str, required=True,
help='language to use')
parser.add_argument('-f', '--force', action='store_true',
help='(optional) force override existing files. Default: False')
parser.add_argument('-x', '--synthesize', action='store_true',
help='whether to create synthesized data')
parser.add_argument('-num', '--include_numeric', action='store_true', default=False,
help='(optional) whether to include transcripts with numeric chars (default: False)')
parser.add_argument('-min', '--min_duration', nargs='?', type=int, default=0,
help='(optional) maximum number of speech segments minutes to process (default: all)')
parser.add_argument('-max', '--max_duration', nargs='?', type=int, default=0,
help='(optional) maximum number of speech segments minutes to process (default: all)')
parser.add_argument('-p', '--precompute_features', action='store_true',
help='(optional) precompute MFCC features in HDF5 format. Default: False')
args = parser.parse_args()
def main(args):
print(create_args_str(args))
target_dir, corpus_id, force, synthesize, min_dur, max_dur, precompute_features = setup(args)
corpus = get_corpus(args.source_dir, args.language)
corpus.summary()
print(f'processing {corpus.name} corpus and saving split segments in {target_dir}')
csv_train, csv_dev, csv_test = extract_segments(target_dir, corpus_id, corpus, synthesize, min_dur, max_dur, force)
print(f'done! All files are in {target_dir}')
corpus = DeepSpeechCorpus(args.language, csv_train, csv_dev, csv_test)
corpus.summary()
if precompute_features:
print(f'pre-computing features')
compute_features(csv_train, csv_dev, csv_test, target_dir, force)
def setup(args):
target_dir = join(args.target_dir, args.id)
if not exists(target_dir):
print(f'target directory {target_dir} does not exist. Creating...')
makedirs(target_dir)
force = args.force
if not force and listdir(target_dir):
inp = input(f"""
WARNING: target directory {target_dir} already exists. Override?
(this will overwrite all existing files in {target_dir} with the same names!!!) (Y/n)
""")
force = inp.lower() in ['', 'y']
return target_dir, args.id, force, args.synthesize, args.min_duration, args.max_duration, args.precompute_features
def extract_segments(target_dir, corpus_id, corpus, synthesize=False, min_dur=0, max_dur=0, force=False):
train_set = corpus.train_set(numeric=args.include_numeric)
dev_set = corpus.dev_set(numeric=args.include_numeric)
test_set = corpus.test_set(numeric=args.include_numeric)
print(f'training length is: {timedelta(seconds=sum(seg.duration for seg in train_set))}')
print(f'dev length is: {timedelta(seconds=sum(seg.duration for seg in dev_set))}')
print(f'test length is: {timedelta(seconds=sum(seg.duration for seg in test_set))}')
print(f'processing training segments')
csv_train = process_subset('train', train_set, synthesize, corpus_id, target_dir, min_dur, max_dur, force)
print(f'processing validation segments (data is only synthesized for training set)')
csv_dev = process_subset('dev', dev_set, False, corpus_id, target_dir, min_dur, max_dur, force)
print(f'processing validation segments (data is only synthesized for training set)')
csv_test = process_subset('test', test_set, False, corpus_id, target_dir, min_dur, max_dur, force)
return csv_train, csv_dev, csv_test
def process_subset(subset_id, subset, synthesize, corpus_id, target_dir, min_dur, max_dur, force):
df = split_speech_segments(subset, corpus_id, subset_id, target_dir, synthesize, min_dur, max_dur, force)
csv_path = join(target_dir, f'{corpus_id}-{subset_id}.csv')
print(f'saving metadata in {csv_path}')
df.to_csv(csv_path, index=False)
return csv_path
def split_speech_segments(subset, corpus_id, subset_id, target_dir, synthesize, min_dur, max_dur, force):
total = len(subset)
if max_dur:
print(f'trying to cap numer of speech segments to a total length of {max_dur} minutes. '
f'Speech segements will be sorted by length before capping.')
tot_duration = sum(s.duration for s in subset) / 60
if tot_duration < max_dur:
print(f'WARNING: maximum length of corpus was set to {max_dur} minutes, but total length of all '
f'speech segments is only {tot_duration} minutes! '
f'-> using all entries from corpus ({total} speech segments)')
else:
for i, s in enumerate(sorted(subset, key=lambda s: s.duration)):
if sum(s.duration for s in subset[:i]) > max_dur * 60:
break
print(f'total length of corpus will be capped at {max_dur} minutes ({i} speech segments)')
total = i
subset = subset[:i]
segments = []
files = []
sum_duration = 0
progress = tqdm(subset, total=total, unit=' speech segments')
for i, segment in enumerate(progress):
segment_id = f'{corpus_id}-{subset_id}-{i:0=4d}'
wav_path = f'{segment_id}.wav'
wav_path_absolute = join(target_dir, wav_path)
if not exists(wav_path_absolute) or not getsize(wav_path_absolute) or force:
sf.write(wav_path_absolute, segment.audio, segment.rate, subtype='PCM_16')
segments.append((segment_id, segment.audio, segment.rate, segment.transcript))
files.append((wav_path, getsize(wav_path_absolute), segment.duration, segment.transcript))
sum_duration += segment.duration
if synthesize:
audio, rate = librosa.load(wav_path_absolute, sr=16000, mono=True)
wav_shift = f'{segment_id}-shift.wav'
wav_echo = f'{segment_id}-echo.wav'
wav_high = f'{segment_id}-high.wav'
wav_low = f'{segment_id}-low.wav'
wav_fast = f'{segment_id}-fast.wav'
wav_slow = f'{segment_id}-slow.wav'
wav_loud = f'{segment_id}-loud.wav'
wav_quiet = f'{segment_id}-quiet.wav'
shift = random.uniform(0.5, 1.5)
wav_shift_path = join(target_dir, wav_shift)
wav_shift_len = synthesize_and_write(audio, rate, wav_shift_path, shift=shift, force=force)
files.append((wav_shift, getsize(wav_shift_path), wav_shift_len, segment.transcript))
echo = random.randint(30, 100)
wav_echo_path = join(target_dir, wav_echo)
wav_echo_len = synthesize_and_write(audio, rate, wav_echo_path, echo=echo, force=force)
files.append((wav_echo, getsize(wav_echo_path), wav_echo_len, segment.transcript))
higher = random.uniform(1.5, 5)
wav_high_path = join(target_dir, wav_high)
wav_high_len = synthesize_and_write(audio, rate, wav_high_path, pitch=higher, force=force)
files.append((wav_high, getsize(wav_high_path), wav_high_len, segment.transcript))
lower = random.uniform(-5, -1.5)
wav_low_path = join(target_dir, wav_low)
wav_low_len = synthesize_and_write(audio, rate, wav_low_path, pitch=lower, force=force)
files.append((wav_low, getsize(wav_low_path), wav_low_len, segment.transcript))
faster = random.uniform(1.2, 1.6)
wav_fast_path = join(target_dir, wav_fast)
wav_fast_len = synthesize_and_write(audio, rate, wav_fast_path, tempo=faster, force=force)
files.append((wav_fast, getsize(wav_fast_path), wav_fast_len, segment.transcript))
slower = random.uniform(0.6, 0.8)
wav_slow_path = join(target_dir, wav_slow)
wav_slow_len = synthesize_and_write(audio, rate, wav_slow_path, tempo=slower, force=force)
files.append((wav_slow, getsize(wav_slow_path), wav_slow_len, segment.transcript))
louder = random.randint(5, 15)
wav_loud_path = join(target_dir, wav_loud)
wav_loud_len = synthesize_and_write(audio, rate, wav_loud_path, volume=louder, force=force)
files.append((wav_loud, getsize(wav_loud_path), wav_loud_len, segment.transcript))
quieter = random.randint(-15, 5)
wav_quiet_path = join(target_dir, wav_quiet)
wav_quiet_len = synthesize_and_write(audio, rate, wav_quiet_path, volume=quieter, force=force)
files.append((wav_quiet, getsize(wav_quiet_path), wav_quiet_len, segment.transcript))
description = wav_path
if max_dur:
description += f' {timedelta(seconds=sum_duration)}'
progress.set_description(description)
if max_dur and sum_duration > max_dur * 60:
break
sum_duration = sum(getitem(t, 2) for t in files)
if synthesize or min_dur and sum_duration < min_dur * 60 or max_dur and sum_duration < max_dur * 60:
print(f'total length: {timedelta(seconds=sum_duration)}')
print(f'filling up with distorted data until {timedelta(minutes=1000)} is reached')
i = 0
while sum_duration < 1000 * 60:
i += 1
for segment_id, audio, rate, transcript in tqdm(segments, unit=' segments'):
shift = random.uniform(0.5, 1.5)
pitch = random.uniform(-5, 5)
tempo = random.uniform(0.6, 1.6)
volume = random.randint(-15, 15)
echo = random.randint(30, 100)
wav_distort = f'{segment_id}-distorted-{i}.wav'
wav_distort_path = join(target_dir, wav_distort)
wav_distort_len = synthesize_and_write(audio, rate, wav_distort_path, shift=shift, pitch=pitch,
tempo=tempo, volume=volume, echo=echo, force=force)
files.append((wav_distort, getsize(wav_distort_path), wav_distort_len, transcript))
sum_duration += wav_distort_len
if sum_duration > 1000 * 60:
break
print(f'total length: {timedelta(seconds=sum_duration)}')
return pd.DataFrame(data=files, columns=['wav_filename', 'wav_filesize', 'wav_length', 'transcript']).sort_values(
'wav_length')
def synthesize_and_write(audio, rate, wav_path, shift=0, pitch=0, tempo=1, volume=0, echo=0, force=False):
audio_synth = distort_audio(audio, rate,
shift_s=shift,
pitch_factor=pitch,
tempo_factor=tempo,
volume=volume,
echo=echo)
if not exists(wav_path) or not getsize(wav_path) or force:
sf.write(wav_path, audio_synth, rate, subtype='PCM_16')
return len(audio_synth) / rate
def compute_features(csv_train, csv_valid, csv_test, target_dir, force):
df_train = pd.read_csv(csv_train)
df_dev = pd.read_csv(csv_valid)
df_test = pd.read_csv(csv_test)
h5_file_path = join(target_dir, 'features_mfcc.h5')
if exists(h5_file_path) and force:
remove(h5_file_path)
if not exists(h5_file_path):
with h5py.File(h5_file_path) as h5_file:
create_subset(h5_file, 'train', df_train)
create_subset(h5_file, 'test', df_dev)
create_subset(h5_file, 'valid', df_test)
def create_subset(h5_file, name, df):
h5_file.create_dataset(f'{name}/features', shape=(0,), maxshape=(None,), dtype=h5py.special_dtype(vlen=np.float32))
h5_file.create_dataset(f'{name}/labels', shape=(0,), maxshape=(None,), dtype=h5py.special_dtype(vlen=str))
h5_file.create_dataset(f'{name}/durations', shape=(0,), maxshape=(None,))
progress = tqdm(zip(df['wav_filename'], df['wav_filesize'], df['transcript']), total=len(df.index))
for wav_file_path, wav_file_size, transcript in progress:
progress.set_description(f'{name}: {wav_file_path}')
inputs = h5_file[name]['features']
labels = h5_file[name]['labels']
durations = h5_file[name]['durations']
rate, audio = wavfile.read(wav_file_path)
inp = mfcc(audio, samplerate=rate, numcep=26) # (num_timesteps x num_features)
inputs.resize(inputs.shape[0] + 1, axis=0)
inputs[inputs.shape[0] - 1] = inp.flatten().astype(np.float32)
labels.resize(labels.shape[0] + 1, axis=0)
labels[labels.shape[0] - 1] = transcript
durations.resize(durations.shape[0] + 1, axis=0)
durations[durations.shape[0] - 1] = wav_file_size
if __name__ == '__main__':
main(args)