|
| 1 | +# Copyright (c) Microsoft Corporation. |
| 2 | +# Licensed under the MIT License. |
| 3 | + |
| 4 | +""" |
| 5 | +A one-layer SmolLM model test case. |
| 6 | +This is an onnxscript version of the model. |
| 7 | +""" |
| 8 | + |
| 9 | +import numpy |
| 10 | +from onnx.helper import make_tensor |
| 11 | + |
| 12 | +import onnxscript.ir as ir |
| 13 | +from onnxscript import script |
| 14 | +from onnxscript.onnx_opset import opset18 |
| 15 | +from onnxscript.onnx_types import FLOAT, INT64 |
| 16 | + |
| 17 | + |
| 18 | +def make_model( |
| 19 | + input_layernorm_weight_0, |
| 20 | + post_attention_layernorm_weight0, |
| 21 | + norm_weight, |
| 22 | + head_weight, |
| 23 | + self_attn_q_proj_weight0, |
| 24 | + self_attn_k_proj_weight0, |
| 25 | + self_attn_v_proj_weight0, |
| 26 | + self_attn_o_proj_weight0, |
| 27 | + mlp_gate_proj_weight0, |
| 28 | + mlp_up_proj_weight0, |
| 29 | + mlp_down_proj_weight0, |
| 30 | +): |
| 31 | + @script() |
| 32 | + def main_graph( |
| 33 | + input0: INT64[1, 10], input1: FLOAT[1, 10], input2: INT64[1, 10] |
| 34 | + ) -> (FLOAT[1, 10, 49152], FLOAT[1, 32, 10, 64], FLOAT[1, 32, 10, 64]): |
| 35 | + model_layers_0_input_layernorm_weight = opset18.Constant( |
| 36 | + value=input_layernorm_weight_0 |
| 37 | + ) |
| 38 | + model_layers_0_post_attention_layernorm_weight = opset18.Constant( |
| 39 | + value=post_attention_layernorm_weight0 |
| 40 | + ) |
| 41 | + model_norm_weight = opset18.Constant(value=norm_weight) |
| 42 | + lm_head_weight = opset18.Constant(value=head_weight) |
| 43 | + model_layers_0_self_attn_q_proj_weight = opset18.Constant( |
| 44 | + value=self_attn_q_proj_weight0 |
| 45 | + ) |
| 46 | + model_layers_0_self_attn_k_proj_weight = opset18.Constant( |
| 47 | + value=self_attn_k_proj_weight0 |
| 48 | + ) |
| 49 | + model_layers_0_self_attn_v_proj_weight = opset18.Constant( |
| 50 | + value=self_attn_v_proj_weight0 |
| 51 | + ) |
| 52 | + model_layers_0_self_attn_o_proj_weight = opset18.Constant( |
| 53 | + value=self_attn_o_proj_weight0 |
| 54 | + ) |
| 55 | + model_layers_0_mlp_gate_proj_weight = opset18.Constant(value=mlp_gate_proj_weight0) |
| 56 | + model_layers_0_mlp_up_proj_weight = opset18.Constant(value=mlp_up_proj_weight0) |
| 57 | + model_layers_0_mlp_down_proj_weight = opset18.Constant(value=mlp_down_proj_weight0) |
| 58 | + |
| 59 | + embedding = opset18.Gather(lm_head_weight, input0, axis=0) |
| 60 | + minus_inf_10x10 = opset18.ConstantOfShape([10, 10], [-3.4028234663852886e38]) |
| 61 | + mask_10x10 = opset18.Trilu(minus_inf_10x10, 1) |
| 62 | + slice_5 = opset18.Reshape(mask_10x10, [1, 1, 10, 10]) |
| 63 | + unsqueeze_2 = opset18.Unsqueeze(input1, 1) |
| 64 | + unsqueeze_3 = opset18.Unsqueeze(unsqueeze_2, 2) |
| 65 | + add = slice_5 + unsqueeze_3 |
| 66 | + eq = add == 0.0 |
| 67 | + slice_10 = slice_5 |
| 68 | + masked_fill = opset18.Where(eq, -3.4028235e38, slice_10) |
| 69 | + val_179 = opset18.Transpose(masked_fill, perm=[2, 1, 0, 3]) |
| 70 | + slice_scatter = opset18.Transpose(val_179, perm=[2, 1, 0, 3]) |
| 71 | + val_191 = opset18.Transpose(slice_scatter, perm=[1, 0, 2, 3]) |
| 72 | + slice_scatter_1 = opset18.Transpose(val_191, perm=[1, 0, 2, 3]) |
| 73 | + unsqueeze_6 = opset18.Unsqueeze(input2, 1) |
| 74 | + _to_copy_1 = opset18.Cast(unsqueeze_6, to=1) |
| 75 | + view_1 = opset18.Constant( |
| 76 | + value=make_tensor( |
| 77 | + "value", |
| 78 | + 1, |
| 79 | + dims=[1, 32, 1], |
| 80 | + vals=[ |
| 81 | + 1.0, |
| 82 | + 0.7498942017555237, |
| 83 | + 0.5623413324356079, |
| 84 | + 0.4216965138912201, |
| 85 | + 0.3162277638912201, |
| 86 | + 0.23713736236095428, |
| 87 | + 0.17782793939113617, |
| 88 | + 0.1333521455526352, |
| 89 | + 0.10000000149011612, |
| 90 | + 0.07498941570520401, |
| 91 | + 0.05623412877321243, |
| 92 | + 0.04216964915394783, |
| 93 | + 0.03162277862429619, |
| 94 | + 0.0237137358635664, |
| 95 | + 0.017782794311642647, |
| 96 | + 0.01333521492779255, |
| 97 | + 0.009999999776482582, |
| 98 | + 0.007498942315578461, |
| 99 | + 0.005623413249850273, |
| 100 | + 0.0042169648222625256, |
| 101 | + 0.003162277862429619, |
| 102 | + 0.0023713738191872835, |
| 103 | + 0.0017782794311642647, |
| 104 | + 0.0013335214462131262, |
| 105 | + 0.0010000000474974513, |
| 106 | + 0.0007498941849917173, |
| 107 | + 0.000562341301701963, |
| 108 | + 0.00042169648804701865, |
| 109 | + 0.0003162277862429619, |
| 110 | + 0.0002371373848291114, |
| 111 | + 0.00017782794020604342, |
| 112 | + 0.0001333521504420787, |
| 113 | + ], |
| 114 | + ) |
| 115 | + ) |
| 116 | + view_2 = opset18.Reshape(_to_copy_1, [1, 1, 10], allowzero=0) |
| 117 | + bmm = view_1 @ view_2 |
| 118 | + view_3 = opset18.Reshape(bmm, [1, 32, 10], allowzero=0) |
| 119 | + transpose = opset18.Transpose(view_3, perm=[0, 2, 1]) |
| 120 | + cat = opset18.Concat(transpose, transpose, axis=-1) |
| 121 | + cos = opset18.Cos(cat) |
| 122 | + sin = opset18.Sin(cat) |
| 123 | + pow_1 = embedding**2.0 |
| 124 | + mean = opset18.ReduceMean(pow_1, [-1], keepdims=1, noop_with_empty_axes=0) |
| 125 | + add_1 = mean + 1e-05 |
| 126 | + val_244 = opset18.Sqrt(add_1) |
| 127 | + rsqrt = opset18.Reciprocal(val_244) |
| 128 | + mul_3 = embedding * rsqrt |
| 129 | + mul_4 = model_layers_0_input_layernorm_weight * mul_3 |
| 130 | + t = opset18.Transpose(model_layers_0_self_attn_q_proj_weight, perm=[1, 0]) |
| 131 | + view_5 = mul_4 @ t |
| 132 | + t_1 = opset18.Transpose(model_layers_0_self_attn_k_proj_weight, perm=[1, 0]) |
| 133 | + view_7 = mul_4 @ t_1 |
| 134 | + t_2 = opset18.Transpose(model_layers_0_self_attn_v_proj_weight, perm=[1, 0]) |
| 135 | + view_9 = mul_4 @ t_2 |
| 136 | + view_10 = opset18.Reshape(view_5, [1, 10, 32, 64], allowzero=0) |
| 137 | + transpose_1 = opset18.Transpose(view_10, perm=[0, 2, 1, 3]) |
| 138 | + view_11 = opset18.Reshape(view_7, [1, 10, 32, 64], allowzero=0) |
| 139 | + transpose_2 = opset18.Transpose(view_11, perm=[0, 2, 1, 3]) |
| 140 | + view_12 = opset18.Reshape(view_9, [1, 10, 32, 64], allowzero=0) |
| 141 | + transpose_3 = opset18.Transpose(view_12, perm=[0, 2, 1, 3]) |
| 142 | + unsqueeze_7 = opset18.Unsqueeze(cos, 1) |
| 143 | + unsqueeze_8 = opset18.Unsqueeze(sin, 1) |
| 144 | + mul_5 = transpose_1 * unsqueeze_7 |
| 145 | + val_267 = opset18.Constant(value_ints=[1]) |
| 146 | + slice_19 = opset18.Slice(transpose_1, [0], [32], [3], val_267) |
| 147 | + val_277 = opset18.Constant(value_ints=[1]) |
| 148 | + slice_20 = opset18.Slice(transpose_1, [32], [9223372036854775807], [3], val_277) |
| 149 | + neg = opset18.Neg(slice_20) |
| 150 | + cat_1 = opset18.Concat(neg, slice_19, axis=-1) |
| 151 | + mul_6 = cat_1 * unsqueeze_8 |
| 152 | + add_2 = mul_5 + mul_6 |
| 153 | + mul_7 = transpose_2 * unsqueeze_7 |
| 154 | + val_287 = opset18.Constant(value_ints=[1]) |
| 155 | + slice_21 = opset18.Slice(transpose_2, [0], [32], [3], val_287) |
| 156 | + val_297 = opset18.Constant(value_ints=[1]) |
| 157 | + slice_22 = opset18.Slice(transpose_2, [32], [9223372036854775807], [3], val_297) |
| 158 | + neg_1 = opset18.Neg(slice_22) |
| 159 | + cat_2 = opset18.Concat(neg_1, slice_21, axis=-1) |
| 160 | + mul_8 = cat_2 * unsqueeze_8 |
| 161 | + add_3 = mul_7 + mul_8 |
| 162 | + val_346 = opset18.Reshape(add_3, [-1, 10, 64], allowzero=0) |
| 163 | + val_347 = opset18.Transpose(val_346, perm=[0, 2, 1]) |
| 164 | + val_349 = opset18.Reshape(val_347, [1, 32, 64, 10], allowzero=0) |
| 165 | + val_351 = add_2 * [0.35355338] |
| 166 | + val_353 = val_349 * [0.35355338] |
| 167 | + val_354 = val_351 @ val_353 |
| 168 | + val_355 = val_354 + slice_scatter_1 |
| 169 | + val_356 = opset18.Softmax(val_355, axis=-1) |
| 170 | + getitem = val_356 @ transpose_3 |
| 171 | + transpose_4 = opset18.Transpose(getitem, perm=[0, 2, 1, 3]) |
| 172 | + view_13 = opset18.Reshape(transpose_4, [1, 10, -1], allowzero=0) |
| 173 | + t_3 = opset18.Transpose(model_layers_0_self_attn_o_proj_weight, perm=[1, 0]) |
| 174 | + view_15 = view_13 @ t_3 |
| 175 | + add_4 = embedding + view_15 |
| 176 | + pow_2 = add_4**2.0 |
| 177 | + mean_1 = opset18.ReduceMean(pow_2, [-1], keepdims=1, noop_with_empty_axes=0) |
| 178 | + add_5 = mean_1 + 1e-05 |
| 179 | + val_379 = opset18.Sqrt(add_5) |
| 180 | + rsqrt_1 = opset18.Reciprocal(val_379) |
| 181 | + mul_9 = add_4 * rsqrt_1 |
| 182 | + mul_10 = model_layers_0_post_attention_layernorm_weight * mul_9 |
| 183 | + t_4 = opset18.Transpose(model_layers_0_mlp_gate_proj_weight, perm=[1, 0]) |
| 184 | + view_17 = mul_10 @ t_4 |
| 185 | + val_383 = opset18.Sigmoid(view_17) |
| 186 | + silu = view_17 * val_383 |
| 187 | + t_5 = opset18.Transpose(model_layers_0_mlp_up_proj_weight, perm=[1, 0]) |
| 188 | + view_19 = mul_10 @ t_5 |
| 189 | + mul_11 = silu * view_19 |
| 190 | + t_6 = opset18.Transpose(model_layers_0_mlp_down_proj_weight, perm=[1, 0]) |
| 191 | + view_21 = mul_11 @ t_6 |
| 192 | + add_6 = add_4 + view_21 |
| 193 | + pow_3 = add_6**2.0 |
| 194 | + mean_2 = opset18.ReduceMean(pow_3, [-1], keepdims=1, noop_with_empty_axes=0) |
| 195 | + add_7 = mean_2 + 1e-05 |
| 196 | + val_391 = opset18.Sqrt(add_7) |
| 197 | + rsqrt_2 = opset18.Reciprocal(val_391) |
| 198 | + mul_12 = add_6 * rsqrt_2 |
| 199 | + mul_13 = model_norm_weight * mul_12 |
| 200 | + t_7 = opset18.Transpose(lm_head_weight, perm=[1, 0]) |
| 201 | + view_23 = mul_13 @ t_7 |
| 202 | + _to_copy_12 = opset18.Identity(view_23) |
| 203 | + return _to_copy_12, add_3, transpose_3 |
| 204 | + |
| 205 | + model = main_graph.to_model_proto() |
| 206 | + return model |
| 207 | + |
| 208 | + |
| 209 | +def make_model_with_random_weights(): |
| 210 | + input_layernorm_weight_0 = numpy.random.rand(2048).astype(numpy.float32) |
| 211 | + post_attention_layernorm_weight0 = numpy.random.rand(2048).astype(numpy.float32) |
| 212 | + norm_weight = numpy.random.rand(2048).astype(numpy.float32) |
| 213 | + head_weight = numpy.random.rand(49152, 2048).astype(numpy.float32) |
| 214 | + self_attn_q_proj_weight0 = numpy.random.rand(2048, 2048).astype(numpy.float32) |
| 215 | + self_attn_k_proj_weight0 = numpy.random.rand(2048, 2048).astype(numpy.float32) |
| 216 | + self_attn_v_proj_weight0 = numpy.random.rand(2048, 2048).astype(numpy.float32) |
| 217 | + self_attn_o_proj_weight0 = numpy.random.rand(2048, 2048).astype(numpy.float32) |
| 218 | + mlp_gate_proj_weight0 = numpy.random.rand(8192, 2048).astype(numpy.float32) |
| 219 | + mlp_up_proj_weight0 = numpy.random.rand(8192, 2048).astype(numpy.float32) |
| 220 | + mlp_down_proj_weight0 = numpy.random.rand(2048, 8192).astype(numpy.float32) |
| 221 | + model = make_model( |
| 222 | + input_layernorm_weight_0, |
| 223 | + post_attention_layernorm_weight0, |
| 224 | + norm_weight, |
| 225 | + head_weight, |
| 226 | + self_attn_q_proj_weight0, |
| 227 | + self_attn_k_proj_weight0, |
| 228 | + self_attn_v_proj_weight0, |
| 229 | + self_attn_o_proj_weight0, |
| 230 | + mlp_gate_proj_weight0, |
| 231 | + mlp_up_proj_weight0, |
| 232 | + mlp_down_proj_weight0, |
| 233 | + ) |
| 234 | + return model |
| 235 | + |
| 236 | + |
| 237 | +class _SmollmTestData: |
| 238 | + def get_onnx_model(self): |
| 239 | + if not hasattr(self, "_onnx_model"): |
| 240 | + model_proto = make_model_with_random_weights() |
| 241 | + model = ir.serde.deserialize_model(model_proto) |
| 242 | + self._onnx_model = model |
| 243 | + return self._onnx_model |
| 244 | + |
| 245 | + def get_ort_inputs(self): |
| 246 | + if not hasattr(self, "_ort_inputs"): |
| 247 | + inputs = { |
| 248 | + "input0": numpy.random.randint(0, 49152, (1, 10)).astype(numpy.int64), |
| 249 | + "input1": numpy.ones((1, 10), dtype=numpy.float32), |
| 250 | + "input2": numpy.arange(10, dtype=numpy.int64).reshape(1, 10), |
| 251 | + } |
| 252 | + self._ort_inputs = inputs |
| 253 | + return self._ort_inputs |
0 commit comments