Skip to content

Commit 7951ae5

Browse files
committed
lint
Signed-off-by: Ti-Tai Wang <titaiwang@microsoft.com>
1 parent d4d5c9e commit 7951ae5

File tree

1 file changed

+20
-14
lines changed

1 file changed

+20
-14
lines changed

onnx/defs/nn/defs.cc

Lines changed: 20 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -552,7 +552,8 @@ ONNX_OPERATOR_SET_SCHEMA(
552552
static std::function<void(OpSchema&)> LpPoolOpSchemaGenerator(const char* name) {
553553
return [=](OpSchema& schema) {
554554
std::string doc;
555-
POPULATE_OP_DOC_STR(doc = R"DOC(
555+
POPULATE_OP_DOC_STR(
556+
doc = R"DOC(
556557
{name} consumes an input tensor X and applies Lp pooling across
557558
the tensor according to kernel sizes, stride sizes, and pad lengths.
558559
Lp pooling consisting of computing the Lp norm on all values of a subset
@@ -576,7 +577,7 @@ static std::function<void(OpSchema&)> LpPoolOpSchemaGenerator(const char* name)
576577
```
577578
pad_shape[i] = (output_spatial_shape[i] - 1) * strides_spatial_shape[i] + {kernelSpatialShape} - input_spatial_shape[i]
578579
```)DOC";
579-
ReplaceAll(doc, "{name}", name););
580+
ReplaceAll(doc, "{name}", name););
580581
schema.SetDoc(doc);
581582
schema.Attr("kernel_shape", "The size of the kernel along each axis.", AttributeProto::INTS);
582583
schema.Attr(
@@ -678,11 +679,12 @@ static void roiPoolTypeShapeInference(InferenceContext& ctx) {
678679
static std::function<void(OpSchema&)> RoiPoolOpSchemaGenerator(const char* name) {
679680
return [=](OpSchema& schema) {
680681
std::string doc;
681-
POPULATE_OP_DOC_STR(doc = R"DOC(
682+
POPULATE_OP_DOC_STR(
683+
doc = R"DOC(
682684
ROI {name} pool consumes an input tensor X and region of interests (RoIs) to
683685
apply {name} pooling across each RoI, to produce output 4-D tensor of shape
684686
(num_rois, channels, pooled_shape[0], pooled_shape[1]).)DOC";
685-
ReplaceAll(doc, "{name}", name););
687+
ReplaceAll(doc, "{name}", name););
686688
schema.SetDoc(doc);
687689
schema.Attr("pooled_shape", "ROI pool output shape (height, width).", AttributeProto::INTS);
688690
schema.Attr(
@@ -733,10 +735,11 @@ ONNX_OPERATOR_SET_SCHEMA(MaxRoiPool, 22, OpSchema().FillUsing(RoiPoolOpSchemaGen
733735
static std::function<void(OpSchema&)> ConvOpSchemaGenerator(const char* filter_desc) {
734736
return [=](OpSchema& schema) {
735737
std::string doc;
736-
POPULATE_OP_DOC_STR(doc = R"DOC(
738+
POPULATE_OP_DOC_STR(
739+
doc = R"DOC(
737740
The convolution operator consumes an input tensor and {filter_desc}, and
738741
computes the output.)DOC";
739-
ReplaceAll(doc, "{filter_desc}", filter_desc););
742+
ReplaceAll(doc, "{filter_desc}", filter_desc););
740743
schema.SetDoc(doc);
741744
schema.Input(
742745
0,
@@ -1248,7 +1251,8 @@ ONNX_API void convTransposeShapeInference(InferenceContext& ctx) {
12481251
static std::function<void(OpSchema&)> ConvTransposeOpSchemaGenerator(const char* filter_desc) {
12491252
return [=](OpSchema& schema) {
12501253
std::string doc;
1251-
POPULATE_OP_DOC_STR(doc = R"DOC(
1254+
POPULATE_OP_DOC_STR(
1255+
doc = R"DOC(
12521256
The convolution transpose operator consumes an input tensor and {filter_desc},
12531257
and computes the output.
12541258
@@ -1263,7 +1267,7 @@ output_shape can also be explicitly specified in which case pads values are auto
12631267
Else: pads[start_i] = total_padding[i] - (total_padding[i]/2); pads[end_i] = (total_padding[i]/2).
12641268
12651269
)DOC";
1266-
ReplaceAll(doc, "{filter_desc}", filter_desc););
1270+
ReplaceAll(doc, "{filter_desc}", filter_desc););
12671271
schema.SetDoc(doc);
12681272
schema.Input(
12691273
0,
@@ -1491,12 +1495,13 @@ ONNX_API void globalPoolTypeShapeInference(InferenceContext& ctx) {
14911495
static std::function<void(OpSchema&)> GlobalPoolingOpSchemaGenerator(const char* op_type, const char* op) {
14921496
return [=](OpSchema& schema) {
14931497
std::string doc;
1494-
POPULATE_OP_DOC_STR(doc = R"DOC(
1498+
POPULATE_OP_DOC_STR(
1499+
doc = R"DOC(
14951500
Global{op_type} consumes an input tensor X and applies {op} pooling across
14961501
the values in the same channel. This is equivalent to {op_type} with kernel size
14971502
equal to the spatial dimension of input tensor.)DOC";
1498-
ReplaceAll(doc, "{op_type}", op_type);
1499-
ReplaceAll(doc, "{op}", op););
1503+
ReplaceAll(doc, "{op_type}", op_type);
1504+
ReplaceAll(doc, "{op}", op););
15001505
schema.SetDoc(doc);
15011506
schema.Input(
15021507
0,
@@ -1538,12 +1543,13 @@ ONNX_OPERATOR_SET_SCHEMA(GlobalMaxPool, 22, OpSchema().FillUsing(GlobalPoolingOp
15381543
static std::function<void(OpSchema&)> GlobalLpPoolingOpSchemaGenerator(const char* op_type, const char* op) {
15391544
return [=](OpSchema& schema) {
15401545
std::string doc;
1541-
POPULATE_OP_DOC_STR(doc = R"DOC(
1546+
POPULATE_OP_DOC_STR(
1547+
doc = R"DOC(
15421548
Global{op_type} consumes an input tensor X and applies {op} pooling across
15431549
the values in the same channel. This is equivalent to {op_type} with kernel size
15441550
equal to the spatial dimension of input tensor.)DOC";
1545-
ReplaceAll(doc, "{op_type}", op_type);
1546-
ReplaceAll(doc, "{op}", op););
1551+
ReplaceAll(doc, "{op_type}", op_type);
1552+
ReplaceAll(doc, "{op}", op););
15471553
schema.SetDoc(doc);
15481554
schema.Attr(
15491555
"p", "p value of the Lp norm used to pool over the input data.", AttributeProto::INT, static_cast<int64_t>(2));

0 commit comments

Comments
 (0)