@@ -552,7 +552,8 @@ ONNX_OPERATOR_SET_SCHEMA(
552552static std::function<void (OpSchema&)> LpPoolOpSchemaGenerator(const char * name) {
553553 return [=](OpSchema& schema) {
554554 std::string doc;
555- POPULATE_OP_DOC_STR (doc = R"DOC(
555+ POPULATE_OP_DOC_STR (
556+ doc = R"DOC(
556557 {name} consumes an input tensor X and applies Lp pooling across
557558 the tensor according to kernel sizes, stride sizes, and pad lengths.
558559 Lp pooling consisting of computing the Lp norm on all values of a subset
@@ -576,7 +577,7 @@ static std::function<void(OpSchema&)> LpPoolOpSchemaGenerator(const char* name)
576577 ```
577578 pad_shape[i] = (output_spatial_shape[i] - 1) * strides_spatial_shape[i] + {kernelSpatialShape} - input_spatial_shape[i]
578579 ```)DOC" ;
579- ReplaceAll (doc, " {name}" , name););
580+ ReplaceAll (doc, " {name}" , name););
580581 schema.SetDoc (doc);
581582 schema.Attr (" kernel_shape" , " The size of the kernel along each axis." , AttributeProto::INTS);
582583 schema.Attr (
@@ -678,11 +679,12 @@ static void roiPoolTypeShapeInference(InferenceContext& ctx) {
678679static std::function<void (OpSchema&)> RoiPoolOpSchemaGenerator (const char * name) {
679680 return [=](OpSchema& schema) {
680681 std::string doc;
681- POPULATE_OP_DOC_STR (doc = R"DOC(
682+ POPULATE_OP_DOC_STR (
683+ doc = R"DOC(
682684 ROI {name} pool consumes an input tensor X and region of interests (RoIs) to
683685 apply {name} pooling across each RoI, to produce output 4-D tensor of shape
684686 (num_rois, channels, pooled_shape[0], pooled_shape[1]).)DOC" ;
685- ReplaceAll (doc, " {name}" , name););
687+ ReplaceAll (doc, " {name}" , name););
686688 schema.SetDoc (doc);
687689 schema.Attr (" pooled_shape" , " ROI pool output shape (height, width)." , AttributeProto::INTS);
688690 schema.Attr (
@@ -733,10 +735,11 @@ ONNX_OPERATOR_SET_SCHEMA(MaxRoiPool, 22, OpSchema().FillUsing(RoiPoolOpSchemaGen
733735static std::function<void (OpSchema&)> ConvOpSchemaGenerator (const char * filter_desc) {
734736 return [=](OpSchema& schema) {
735737 std::string doc;
736- POPULATE_OP_DOC_STR (doc = R"DOC(
738+ POPULATE_OP_DOC_STR (
739+ doc = R"DOC(
737740The convolution operator consumes an input tensor and {filter_desc}, and
738741computes the output.)DOC" ;
739- ReplaceAll (doc, " {filter_desc}" , filter_desc););
742+ ReplaceAll (doc, " {filter_desc}" , filter_desc););
740743 schema.SetDoc (doc);
741744 schema.Input (
742745 0 ,
@@ -1248,7 +1251,8 @@ ONNX_API void convTransposeShapeInference(InferenceContext& ctx) {
12481251static std::function<void (OpSchema&)> ConvTransposeOpSchemaGenerator (const char * filter_desc) {
12491252 return [=](OpSchema& schema) {
12501253 std::string doc;
1251- POPULATE_OP_DOC_STR (doc = R"DOC(
1254+ POPULATE_OP_DOC_STR (
1255+ doc = R"DOC(
12521256The convolution transpose operator consumes an input tensor and {filter_desc},
12531257and computes the output.
12541258
@@ -1263,7 +1267,7 @@ output_shape can also be explicitly specified in which case pads values are auto
12631267 Else: pads[start_i] = total_padding[i] - (total_padding[i]/2); pads[end_i] = (total_padding[i]/2).
12641268
12651269 )DOC" ;
1266- ReplaceAll (doc, " {filter_desc}" , filter_desc););
1270+ ReplaceAll (doc, " {filter_desc}" , filter_desc););
12671271 schema.SetDoc (doc);
12681272 schema.Input (
12691273 0 ,
@@ -1491,12 +1495,13 @@ ONNX_API void globalPoolTypeShapeInference(InferenceContext& ctx) {
14911495static std::function<void (OpSchema&)> GlobalPoolingOpSchemaGenerator (const char * op_type, const char * op) {
14921496 return [=](OpSchema& schema) {
14931497 std::string doc;
1494- POPULATE_OP_DOC_STR (doc = R"DOC(
1498+ POPULATE_OP_DOC_STR (
1499+ doc = R"DOC(
14951500 Global{op_type} consumes an input tensor X and applies {op} pooling across
14961501 the values in the same channel. This is equivalent to {op_type} with kernel size
14971502 equal to the spatial dimension of input tensor.)DOC" ;
1498- ReplaceAll (doc, " {op_type}" , op_type);
1499- ReplaceAll (doc, " {op}" , op););
1503+ ReplaceAll (doc, " {op_type}" , op_type);
1504+ ReplaceAll (doc, " {op}" , op););
15001505 schema.SetDoc (doc);
15011506 schema.Input (
15021507 0 ,
@@ -1538,12 +1543,13 @@ ONNX_OPERATOR_SET_SCHEMA(GlobalMaxPool, 22, OpSchema().FillUsing(GlobalPoolingOp
15381543static std::function<void (OpSchema&)> GlobalLpPoolingOpSchemaGenerator (const char * op_type, const char * op) {
15391544 return [=](OpSchema& schema) {
15401545 std::string doc;
1541- POPULATE_OP_DOC_STR (doc = R"DOC(
1546+ POPULATE_OP_DOC_STR (
1547+ doc = R"DOC(
15421548 Global{op_type} consumes an input tensor X and applies {op} pooling across
15431549 the values in the same channel. This is equivalent to {op_type} with kernel size
15441550 equal to the spatial dimension of input tensor.)DOC" ;
1545- ReplaceAll (doc, " {op_type}" , op_type);
1546- ReplaceAll (doc, " {op}" , op););
1551+ ReplaceAll (doc, " {op_type}" , op_type);
1552+ ReplaceAll (doc, " {op}" , op););
15471553 schema.SetDoc (doc);
15481554 schema.Attr (
15491555 " p" , " p value of the Lp norm used to pool over the input data." , AttributeProto::INT, static_cast <int64_t >(2 ));
0 commit comments