-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalc.py
executable file
·103 lines (84 loc) · 3.31 KB
/
calc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
#!/bin/python3
# Earley Parser in Python 3 - Example program
# Copyright (C) 2013, 2016 tobyp
# See <http://tobyp.net/parsepy>
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
from parser import Grammar, Rule, Lexicon, Entry, parse
from math import sin, cos, tan, asin, acos, atan, sqrt, exp, log, log10, floor, ceil, fabs, erf, gamma
constants = {
'PI': 3.14159265358979323846264338327950288,
'E': 2.71828182845904523536028747135266249,
'PHI': 1.61803398874989484820458683436563811,
'GAMMA': 0.57721566490153286060651209008240243
}
functions = {
'sin': sin,
'cos': cos,
'tan': tan,
'asin': asin,
'acos': acos,
'atan': atan,
'sqrt': sqrt,
'rt': lambda l, r: l**(1 / r),
'exp': exp,
'log': log,
'log10': lambda x: log10(x),
'ln': lambda x: log(x),
'floor': floor,
'ceil': ceil,
'abs': fabs,
'erf': erf,
'gamma': gamma,
'+': lambda l, r: l + r,
'-': lambda l, r: l - r,
'*': lambda l, r: l * r,
'/': lambda l, r: l / r,
'//': lambda l, r: l // r,
'%': lambda l, r: l % r,
'^': lambda l, r: l ** r
}
math_lexicon = Lexicon([
Entry('(', r'\(', lambda m: None),
Entry(')', r'\)', lambda m: None),
Entry(',', r',', lambda m: None),
Entry('number', r'[0-9]+(\.[0-9]+)?', lambda m: float(m.group(0))),
Entry('op0', r'[\+-]', lambda m: m.group(0)),
Entry('op1', r'[\*/%]|//', lambda m: m.group(0)),
Entry('op2', r'[\^]', lambda m: m.group(0)),
Entry('ident', r'[a-z_A-Z][a-z_A-Z0-9]*', lambda m: m.group(0)),
Entry(None, r'\s+', lambda *args: None)
])
math_grammar = Grammar([
Rule('expression0', ('number',), lambda n: n),
Rule('expression0', ('ident',), lambda n: constants[n]),
Rule('expression0', ('ident', '(', ')'), lambda n, l, r: functions[n]()),
Rule('expression0', ('ident', '(', 'arglist', ')'), lambda n, l, a, r: functions[n](*a)),
Rule('arglist', ('expression4',), lambda e: [e]),
Rule('arglist', ('arglist', ',', 'expression4',), lambda al, e: al + [e]),
Rule('expression0', ('(', 'expression4', ')'), lambda l, i, r: i),
Rule('expression1', ('expression0',), lambda e: e),
Rule('expression1', ('op0', 'expression0',), lambda s, e: e * (-1.0 if s == '-' else 1.0)),
Rule('expression2', ('expression2', 'op0', 'expression1'), lambda l, o, r: functions[o](l, r)),
Rule('expression2', ('expression1',), lambda e: e),
Rule('expression3', ('expression3', 'op1', 'expression2'), lambda l, o, r: functions[o](l, r)),
Rule('expression3', ('expression2',), lambda e: e),
Rule('expression4', ('expression4', 'op2', 'expression3'), lambda l, o, r: functions[o](l, r)),
Rule('expression4', ('expression3',), lambda e: e),
Rule('expression', ('expression4',), lambda e: e),
])
if __name__ == '__main__':
from sys import stdin
for l in stdin:
try:
print(parse(math_lexicon, math_grammar, 'expression', l))
except:
print("Error")