-
Notifications
You must be signed in to change notification settings - Fork 8k
/
Copy pathpredict.py
34 lines (26 loc) · 1.01 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import typing as t
import pandas as pd
from classification_model import __version__ as _version
from classification_model.config.core import config
from classification_model.processing.data_manager import load_pipeline
from classification_model.processing.validation import validate_inputs
pipeline_file_name = f"{config.app_config.pipeline_save_file}{_version}.pkl"
_titanic_pipe = load_pipeline(file_name=pipeline_file_name)
def make_prediction(
*,
input_data: t.Union[pd.DataFrame, dict],
) -> dict:
"""Make a prediction using a saved model pipeline."""
data = pd.DataFrame(input_data)
validated_data, errors = validate_inputs(input_data=data)
results = {"predictions": None, "version": _version, "errors": errors}
if not errors:
predictions = _titanic_pipe.predict(
X=validated_data[config.model_config.features]
)
results = {
"predictions": predictions,
"version": _version,
"errors": errors,
}
return results