-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathFlux_Lora_Merger.py
193 lines (157 loc) · 7.23 KB
/
Flux_Lora_Merger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import os
import io
import gc
import torch
import logging
import contextlib
from safetensors.torch import load_file
from folder_paths import get_filename_list, get_full_path
from comfy.sd import load_lora_for_models
from comfy_extras.nodes_model_merging import save_checkpoint
class FluxLoraMerger:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"unet_model": ("MODEL",),
"merge_strategy": (["sequential", "additive", "average"],),
"enable_lora1": ("BOOLEAN", {"default": False}),
"lora1": (get_filename_list("loras"),),
"lora1_weight": ("FLOAT", {"default": 1.0}),
"enable_lora2": ("BOOLEAN", {"default": False}),
"lora2": (get_filename_list("loras"),),
"lora2_weight": ("FLOAT", {"default": 1.0}),
"enable_lora3": ("BOOLEAN", {"default": False}),
"lora3": (get_filename_list("loras"),),
"lora3_weight": ("FLOAT", {"default": 1.0}),
"enable_lora4": ("BOOLEAN", {"default": False}),
"lora4": (get_filename_list("loras"),),
"lora4_weight": ("FLOAT", {"default": 1.0}),
"save_model": ("BOOLEAN", {"default": False}),
"save_filename": ("STRING", {"default": "flux_lora_merged.safetensors"}),
}
}
RETURN_TYPES = ("MODEL", "STRING",)
RETURN_NAMES = ("model", "merge_report",)
FUNCTION = "merge_loras"
CATEGORY = "flux/dev"
def merge_with_comfy(self, model, lora_path, weight, ignored_counter, report_list):
lora_sd = load_file(lora_path)
# 🔇 Mute comfy logs & stdout
comfy_logger = logging.getLogger()
previous_level = comfy_logger.level
comfy_logger.setLevel(logging.ERROR)
try:
with contextlib.redirect_stdout(io.StringIO()):
model, _ = load_lora_for_models(model, None, lora_sd, weight, 0.0)
finally:
comfy_logger.setLevel(previous_level)
unet_keys = [k for k in lora_sd if k.startswith("lora_unet")]
ignored_keys = [k for k in lora_sd if not k.startswith("lora_unet")]
report_list.append((os.path.basename(lora_path), len(unet_keys), len(ignored_keys)))
ignored_counter[0] += len(ignored_keys)
return model
def merge_loras(self, unet_model, merge_strategy="additive",
enable_lora1=False, lora1="", lora1_weight=1.0,
enable_lora2=False, lora2="", lora2_weight=1.0,
enable_lora3=False, lora3="", lora3_weight=1.0,
enable_lora4=False, lora4="", lora4_weight=1.0,
save_model=False, save_filename="flux_lora_merged.safetensors"):
patcher = unet_model
base_model = patcher.model
lora_list = [
(enable_lora1, lora1, lora1_weight),
(enable_lora2, lora2, lora2_weight),
(enable_lora3, lora3, lora3_weight),
(enable_lora4, lora4, lora4_weight),
]
active_loras = [(get_full_path("loras", l), w) for e, l, w in lora_list if e and l]
if len(active_loras) == 0:
print("[MERGE] No LoRA enabled — skipping merge.")
return (unet_model, "No LoRA selected for merge.")
print("[MERGE] Cleaning VRAM before starting merge...")
torch.cuda.synchronize()
torch.cuda.empty_cache()
gc.collect()
ignored_lora_keys = [0]
lora_report = []
print(f"[MERGE] Starting {merge_strategy} merge with {len(active_loras)} LoRA(s)")
if merge_strategy == "sequential":
for lora_path, weight in active_loras:
patcher = self.merge_with_comfy(patcher, lora_path, weight, ignored_lora_keys, lora_report)
elif merge_strategy in ["additive", "average"]:
threshold = 1e-6
merged_delta = {}
base_sd = base_model.state_dict()
keys_to_consider = set(base_sd.keys())
for lora_path, weight in active_loras:
patcher = self.merge_with_comfy(patcher, lora_path, weight, ignored_lora_keys, lora_report)
torch.cuda.synchronize()
current_sd = patcher.model.state_dict()
for k in current_sd.keys():
if k not in keys_to_consider:
continue
base_val = base_sd[k]
current_val = current_sd[k]
if base_val.shape != current_val.shape:
continue
base_fp32 = base_val.to(torch.float32)
curr_fp32 = current_val.to(torch.float32)
diff = curr_fp32 - base_fp32
if diff.abs().max().item() > threshold:
if k not in merged_delta:
merged_delta[k] = diff * weight
else:
merged_delta[k] += diff * weight
if merge_strategy == "average" and active_loras:
for k in merged_delta:
merged_delta[k] /= len(active_loras)
with torch.no_grad():
for name, param in base_model.named_parameters():
if name in merged_delta:
param.copy_((base_sd[name].to(torch.float32) + merged_delta[name]).to(param.dtype))
merged_delta.clear()
del merged_delta
del base_sd
torch.cuda.empty_cache()
gc.collect()
debug_text = ""
if lora_report:
debug_text += "LoRA Merge Report:\n"
debug_text += "| Filename | UNet Keys | Ignored Keys |\n"
debug_text += "|-----------------------|-----------|---------------|\n"
for name, loaded, ignored in lora_report:
debug_text += f"| {name:<21} | {loaded:^9} | {ignored:^13} |\n"
print(f" → {name}: {loaded} UNet keys, {ignored} ignored")
if ignored_lora_keys[0] > 0:
msg = f"⚠️ {ignored_lora_keys[0]} LoRA keys ignored (non-UNet, e.g. text encoder)"
print(msg)
debug_text += f"\n{msg}"
if save_model:
print("[SAVE] Preparing to save model...")
torch.cuda.synchronize()
torch.cuda.empty_cache()
gc.collect()
output_path = os.path.join(os.getcwd(), "output")
os.makedirs(output_path, exist_ok=True)
try:
save_checkpoint(
model=patcher,
filename_prefix=os.path.splitext(save_filename)[0],
output_dir=output_path,
prompt=None,
extra_pnginfo=None
)
print(f"[SAVE] Model saved to {save_filename}")
except RuntimeError as e:
if "out of memory" in str(e).lower():
print("❌ [SAVE ERROR] Torch ran out of memory during model save. Try freeing VRAM and retry.")
else:
raise e
return (patcher, debug_text)
NODE_CLASS_MAPPINGS = {
"FluxLoraMerger": FluxLoraMerger
}
NODE_DISPLAY_NAME_MAPPINGS = {
"FluxLoraMerger": "Flux LoRA Merger"
}