Skip to content

Unable to Run triton inference testing on 2 COS VM nodes. #177

@Yangyixin27

Description

@Yangyixin27

I created two COS VM nodes using "gcloud alpha compute" with shared network.
I created a docker image( which contains tritonserver 25.01 and tensorrtllm_backend 0.17.0)
Then inside each node (node0 and node1 each with 8 GPUs), I pull the docker image, and inside node 0 docker image, I run the triton prepration:

 export ROOT_DIR=/opt/tritonserver

cd $ROOT_DIR/tensorrtllm_backend/tensorrt_llm/examples/llama/
python3 convert_checkpoint.py --model_dir $ROOT_DIR/Llama-2-7b-hf/  --output_dir $ROOT_DIR/Llama-2-7b-hf/Llama7b_cp_fp16_tp4 --dtype float16  --tp_size 8 --pp_size 2

mkdir $ROOT_DIR/engines

trtllm-build --checkpoint_dir $ROOT_DIR/Llama-2-7b-hf/Llama7b_cp_fp16_tp4 --output_dir $ROOT_DIR/engines/080/llama/7B/8-gpu/ --gpt_attention_plugin float16 --context_fmha enable --gemm_plugin float16 --max_batch_size 64 --max_input_len 1024 --max_seq_len 2048 --max_num_tokens 4096 --paged_kv_cache enable --workers 8

`mkdir` $ROOT_DIR/tensorrtllm_backend/repo/
cd $ROOT_DIR/tensorrtllm_backend
cp -R $ROOT_DIR/tensorrtllm_backend/all_models/inflight_batcher_llm $ROOT_DIR/tensorrtllm_backend/repo

python3 tools/fill_template.py --in_place \
    repo/inflight_batcher_llm/preprocessing/config.pbtxt tokenizer_type:llama,tokenizer_dir:$ROOT_DIR/Llama-2-7b-hf,preprocessing_instance_count:8,triton_max_batch_size:64
 
python3 tools/fill_template.py --in_place \
    repo/inflight_batcher_llm/postprocessing/config.pbtxt tokenizer_type:llama,tokenizer_dir:$ROOT_DIR/Llama-2-7b-hf,postprocessing_instance_count:8,triton_max_batch_size:64

python3 tools/fill_template.py --in_place repo/inflight_batcher_llm/tensorrt_llm/config.pbtxt decoupled_mode:false,max_tokens_in_paged_kv_cache:409600,batch_scheduler_policy:max_utilization,kv_cache_free_gpu_mem_fraction:0.8,max_num_sequences:64,triton_max_batch_size:64,batching_strategy:inflight_fused_batching,engine_dir:$ROOT_DIR/engines/080/llama/7B/8-gpu/,max_beam_width:1,exclude_input_in_output:true,enable_kv_cache_reuse:False,max_queue_delay_microseconds:1000,triton_backend:tensorrtllm,encoder_input_features_data_type:TYPE_FP16,logits_datatype:TYPE_FP32

python3 tools/fill_template.py -i repo/inflight_batcher_llm/tensorrt_llm_bls/config.pbtxt triton_max_batch_size:64,decoupled_mode:false,bls_instance_count:8,logits_datatype:TYPE_FP32

python3 tools/fill_template.py -i repo/inflight_batcher_llm/ensemble/config.pbtxt triton_max_batch_size:64,logits_datatype:TYPE_FP32

Then in node0(inside dock image)
After I run

mpirun --mca btl tcp,self --mca btl_tcp_if_include eth0 --allow-run-as-root -np 16 --hostfile /hostfiles --map-by ppr:1:node -x CUDA_VISIBLE_DEVICES -x WORLD_SIZE=16 /opt/tritonserver/bin/tritonserver --model-repository=$ROOT_DIR/tensorrtllm_backend/repo/inflight_batcher_llm --grpc-port=8001 --http-port=8000 --metrics-port=8002 --disable-auto-complete-config --backend-config=python,shm-region-prefix-name=prefix$OMPI_COMM_WORLD_RANK\_ --model-control-mode=explicit --load-model=tensorrt_llm 1> triton_output.log 2> triton_error.log

But this gives me nothing output and my GPUs in both nodes are not used.(nothing shows in nvidia-smi).
I think I might miss some env setting up? But I totally have no clue what is needed and I'm quite new to triton, any suggestions are appreciated! Thanks ahead.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions