-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathopenvino.cc
1648 lines (1456 loc) · 57.1 KB
/
openvino.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2021-2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdint.h>
#include <mutex>
#include <openvino/openvino.hpp>
#include <vector>
#include "openvino_utils.h"
#include "triton/backend/backend_input_collector.h"
#include "triton/backend/backend_memory.h"
#include "triton/backend/backend_model.h"
#include "triton/backend/backend_model_instance.h"
#include "triton/backend/backend_output_responder.h"
//
// OpenVINO Backend that implements the TRITONBACKEND API.
//
namespace triton { namespace backend { namespace openvino {
namespace {
bool
IsNumber(const std::string& str)
{
return std::find_if(str.begin(), str.end(), [](unsigned char c) {
return !std::isdigit(c);
}) == str.end();
}
} // namespace
// BackendConfiguration
struct BackendConfiguration {
BackendConfiguration() : default_max_batch_size_(0) {}
int default_max_batch_size_;
};
//
// ModelState
//
// State associated with a model that is using this backend. An object
// of this class is created and associated with each
// TRITONBACKEND_Model.
//
class ModelState : public BackendModel {
public:
static TRITONSERVER_Error* Create(
TRITONBACKEND_Model* triton_model, ModelState** state);
virtual ~ModelState() = default;
TRITONSERVER_Error* PrintModelConfig();
TRITONSERVER_Error* ParseParameters();
TRITONSERVER_Error* ParseParameters(const std::string& device);
TRITONSERVER_Error* LoadCpuExtensions(
triton::common::TritonJson::Value& params);
TRITONSERVER_Error* ParseBoolParameter(
const std::string& mkey, triton::common::TritonJson::Value& params,
bool* setting);
TRITONSERVER_Error* ParseParameter(
const std::string& mkey, triton::common::TritonJson::Value& params,
std::vector<std::pair<std::string, ov::Any>>* device_config);
TRITONSERVER_Error* ParseStringParameter(
const std::string& mkey, triton::common::TritonJson::Value& params,
std::string* value);
TRITONSERVER_Error* ParseParameterHelper(
const std::string& mkey, std::string* value,
std::pair<std::string, ov::Any>* ov_property);
TRITONSERVER_Error* ConfigureOpenvinoCore();
// Reads the Intermediate Representation(IR) model using `artifact_name`
// as the name for the model file/directory. Return in `model_path` the
// full path to the model file, return `network` the CNNNetwork.
TRITONSERVER_Error* ReadModel(
const std::string& artifact_name, std::string* model_path);
TRITONSERVER_Error* ValidateConfigureModel();
TRITONSERVER_Error* ValidateInputs(const size_t expected_input_cnt);
TRITONSERVER_Error* ValidateOutputs();
// Loads the configured model on the target device (currently only CPU) is
// supported.
TRITONSERVER_Error* LoadModel(
const std::string& device,
const std::pair<std::string, ov::Any>& property);
// Creates an infer request object on the specified device.
TRITONSERVER_Error* CreateInferRequest(
const std::string& device, ov::InferRequest* infer_request);
// Whether or not the model is read successfully
bool ModelNotRead();
// Whether or not a executable model is loaded on
// the specified device.
bool ModelNotLoaded(const std::string device);
bool SkipDynamicBatchSize() { return skip_dynamic_batchsize_; }
bool EnableBatchPadding() { return enable_padding_; }
std::string TargetDevice() { return target_device_; }
private:
ModelState(TRITONBACKEND_Model* triton_model);
TRITONSERVER_Error* AutoCompleteConfig();
TRITONSERVER_Error* AutoCompleteBatching(
const std::vector<ov::Output<ov::Node>>& ov_inputs,
const std::vector<ov::Output<ov::Node>>& ov_outputs);
TRITONSERVER_Error* AutoCompleteInputOrOutput(
const char* io_json_obj_name,
const std::vector<ov::Output<ov::Node>>& ov_ios);
// Shared resources among the multiple instances.
ov::Core ov_core_;
std::shared_ptr<ov::Model> ov_model_;
std::map<std::string, ov::CompiledModel> compiled_model_;
// Maps device to their respective parameters
std::map<std::string, std::vector<std::pair<std::string, ov::Any>>> config_;
bool model_read_;
bool skip_dynamic_batchsize_;
bool enable_padding_;
bool reshape_io_layers_;
std::string target_device_;
};
TRITONSERVER_Error*
ModelState::Create(TRITONBACKEND_Model* triton_model, ModelState** state)
{
try {
*state = new ModelState(triton_model);
}
catch (const BackendModelException& ex) {
RETURN_ERROR_IF_TRUE(
ex.err_ == nullptr, TRITONSERVER_ERROR_INTERNAL,
std::string("unexpected nullptr in BackendModelException"));
RETURN_IF_ERROR(ex.err_);
}
catch (const ov::Exception& e) {
return TRITONSERVER_ErrorNew(
TRITONSERVER_ERROR_INTERNAL,
(std::string("ModelState::Create ov::Exception: ") + e.what()).c_str());
}
catch (...) {
return TRITONSERVER_ErrorNew(
TRITONSERVER_ERROR_INTERNAL, "ModelState::Create exception");
}
// Auto-complete the configuration if requested...
bool auto_complete_config = false;
RETURN_IF_ERROR(TRITONBACKEND_ModelAutoCompleteConfig(
triton_model, &auto_complete_config));
if (auto_complete_config) {
RETURN_IF_ERROR((*state)->AutoCompleteConfig());
RETURN_IF_ERROR((*state)->SetModelConfig());
}
return nullptr; // success
}
ModelState::ModelState(TRITONBACKEND_Model* triton_model)
: BackendModel(triton_model), model_read_(false),
skip_dynamic_batchsize_(false), enable_padding_(false),
reshape_io_layers_(false), target_device_("CPU")
{
}
TRITONSERVER_Error*
ModelState::PrintModelConfig()
{
// We have the json DOM for the model configuration...
common::TritonJson::WriteBuffer buffer;
RETURN_IF_ERROR(model_config_.PrettyWrite(&buffer));
LOG_MESSAGE(
TRITONSERVER_LOG_INFO,
(std::string("model configuration:\n") + buffer.Contents()).c_str());
return nullptr; // success
}
TRITONSERVER_Error*
ModelState::ReadModel(const std::string& artifact_name, std::string* model_path)
{
RETURN_ERROR_IF_FALSE(
ModelNotRead(), TRITONSERVER_ERROR_INTERNAL,
std::string("attempt to read model at '") + *model_path +
"' more than once");
// Find the IR file that describes the model itself. If the model
// configuration doesn't have an explicit model file specified then
// use the default name ("model.xml").
std::string cc_model_filename = artifact_name;
if (cc_model_filename.empty()) {
cc_model_filename = "model.xml";
}
*model_path = JoinPath(
{RepositoryPath(), std::to_string(Version()), cc_model_filename});
{
bool exists;
RETURN_IF_ERROR(FileExists(*model_path, &exists));
RETURN_ERROR_IF_FALSE(
exists, TRITONSERVER_ERROR_UNAVAILABLE,
std::string("unable to find '") + *model_path + "' for model '" +
Name() + "'");
}
RETURN_IF_OPENVINO_ASSIGN_ERROR(
ov_model_, ov_core_.read_model(*model_path), "reading model");
model_read_ = true;
return nullptr; // success
}
TRITONSERVER_Error*
ModelState::ParseParameters()
{
triton::common::TritonJson::Value params;
bool status = model_config_.Find("parameters", ¶ms);
if (status) {
RETURN_IF_ERROR(LoadCpuExtensions(params));
ParseBoolParameter(
"SKIP_OV_DYNAMIC_BATCHSIZE", params, &skip_dynamic_batchsize_);
ParseBoolParameter("ENABLE_BATCH_PADDING", params, &enable_padding_);
ParseBoolParameter("RESHAPE_IO_LAYERS", params, &reshape_io_layers_);
ParseStringParameter("TARGET_DEVICE", params, &target_device_);
}
return nullptr;
}
TRITONSERVER_Error*
ModelState::ParseParameters(const std::string& device)
{
// Validate and set parameters
triton::common::TritonJson::Value params;
bool status = model_config_.Find("parameters", ¶ms);
if (status) {
config_[device] = {};
auto& device_config = config_.at(device);
ParseParameter("INFERENCE_NUM_THREADS", params, &device_config);
ParseParameter("COMPILATION_NUM_THREADS", params, &device_config);
ParseParameter("HINT_BF16", params, &device_config);
ParseParameter("NUM_STREAMS", params, &device_config);
ParseParameter("PERFORMANCE_HINT", params, &device_config);
}
return nullptr;
}
TRITONSERVER_Error*
ModelState::LoadCpuExtensions(triton::common::TritonJson::Value& params)
{
std::string cpu_ext_path;
ReadParameter(params, "CPU_EXTENSION_PATH", &(cpu_ext_path));
if (!cpu_ext_path.empty()) {
// CPU (MKLDNN) extensions is loaded as a shared library and passed as a
// pointer to base extension
RETURN_IF_OPENVINO_ERROR(
ov_core_.add_extension(cpu_ext_path), " loading custom CPU extensions");
LOG_MESSAGE(
TRITONSERVER_LOG_INFO,
(std::string("CPU (MKLDNN) extensions is loaded") + cpu_ext_path)
.c_str());
}
return nullptr;
}
TRITONSERVER_Error*
ModelState::ParseBoolParameter(
const std::string& mkey, triton::common::TritonJson::Value& params,
bool* setting)
{
std::string value;
RETURN_IF_ERROR(ReadParameter(params, mkey, &(value)));
std::transform(
value.begin(), value.end(), value.begin(),
[](unsigned char c) { return std::tolower(c); });
if (value.compare("yes") == 0) {
*setting = true;
}
return nullptr;
}
TRITONSERVER_Error*
ModelState::ParseStringParameter(
const std::string& mkey, triton::common::TritonJson::Value& params,
std::string* setting)
{
std::string value;
RETURN_IF_ERROR(ReadParameter(params, mkey, &(value)));
std::transform(
value.begin(), value.end(), value.begin(),
[](unsigned char c) { return std::toupper(c); });
if (value.length() > 0) {
*setting = value;
}
return nullptr;
}
TRITONSERVER_Error*
ModelState::ParseParameter(
const std::string& mkey, triton::common::TritonJson::Value& params,
std::vector<std::pair<std::string, ov::Any>>* device_config)
{
std::string value;
RETURN_IF_ERROR(ReadParameter(params, mkey, &(value)));
if (!value.empty()) {
std::pair<std::string, ov::Any> ov_property;
RETURN_IF_ERROR(ParseParameterHelper(mkey, &value, &ov_property));
device_config->push_back(ov_property);
}
return nullptr;
}
TRITONSERVER_Error*
ModelState::ParseParameterHelper(
const std::string& mkey, std::string* value,
std::pair<std::string, ov::Any>* ov_property)
{
std::transform(
value->begin(), value->end(), value->begin(),
[](unsigned char c) { return std::tolower(c); });
if (mkey.compare("INFERENCE_NUM_THREADS") == 0) {
if (!IsNumber(*value)) {
return TRITONSERVER_ErrorNew(
TRITONSERVER_ERROR_INVALID_ARG,
(std::string("expected the parameter '") + mkey +
"' to be a non-negative number, got " + *value)
.c_str());
}
*ov_property = ov::inference_num_threads(std::stoi(*value));
} else if (mkey.compare("COMPILATION_NUM_THREADS") == 0) {
if (!IsNumber(*value)) {
return TRITONSERVER_ErrorNew(
TRITONSERVER_ERROR_INVALID_ARG,
(std::string("expected the parameter '") + mkey +
"' to be a non-negative number, got " + *value)
.c_str());
}
*ov_property = ov::compilation_num_threads(std::stoi(*value));
} else if (mkey.compare("HINT_BF16") == 0) {
if (value->compare("yes") == 0) {
*ov_property = ov::hint::inference_precision(ov::element::bf16);
} else {
return TRITONSERVER_ErrorNew(
TRITONSERVER_ERROR_INVALID_ARG,
(std::string("expected the parameter '") + mkey +
"' to be YES, got " + *value)
.c_str());
}
} else if (mkey.compare("NUM_STREAMS") == 0) {
if (value->compare("auto") == 0) {
*ov_property = ov::streams::num(ov::streams::AUTO);
} else if (value->compare("numa") == 0) {
*ov_property = ov::streams::num(ov::streams::NUMA);
} else if (IsNumber(*value)) {
*ov_property = ov::streams::num(std::stoi(*value));
} else {
return TRITONSERVER_ErrorNew(
TRITONSERVER_ERROR_INVALID_ARG,
(std::string("expected the parameter '") + mkey +
"' to be either AUTO/NUMA/<int_value>, got " + *value)
.c_str());
}
} else if (mkey.compare("PERFORMANCE_HINT") == 0) {
if (value->compare("latency") == 0) {
*ov_property =
ov::hint::performance_mode(ov::hint::PerformanceMode::LATENCY);
} else if (value->compare("throughput") == 0) {
*ov_property =
ov::hint::performance_mode(ov::hint::PerformanceMode::THROUGHPUT);
} else if (value->compare("cumulative_throughput") == 0) {
*ov_property = ov::hint::performance_mode(
ov::hint::PerformanceMode::CUMULATIVE_THROUGHPUT);
} else {
return TRITONSERVER_ErrorNew(
TRITONSERVER_ERROR_INVALID_ARG,
(std::string("expected the parameter '") + mkey +
"' to be LATENCY/THROUGHPUT/CUMULATIVE_THROUGHPUT, got " + *value)
.c_str());
}
} else {
return TRITONSERVER_ErrorNew(
TRITONSERVER_ERROR_INVALID_ARG,
(std::string("the parameter '") + mkey +
"' is not yet supported by openvino backend")
.c_str());
}
return nullptr;
}
TRITONSERVER_Error*
ModelState::ConfigureOpenvinoCore()
{
auto availableDevices = ov_core_.get_available_devices();
std::stringstream list_of_devices;
for (auto& element : availableDevices) {
list_of_devices << element << ",";
}
LOG_MESSAGE(
TRITONSERVER_LOG_VERBOSE,
(std::string("Available OpenVINO devices: " + list_of_devices.str()))
.c_str());
for (auto&& item : config_) {
std::string device_name = item.first;
std::vector<std::pair<std::string, ov::Any>> properties = item.second;
for (auto& property : properties) {
RETURN_IF_OPENVINO_ERROR(
ov_core_.set_property(device_name, property),
"configuring openvino core");
}
}
return nullptr;
}
TRITONSERVER_Error*
ModelState::LoadModel(
const std::string& device, const std::pair<std::string, ov::Any>& property)
{
RETURN_ERROR_IF_FALSE(
ModelNotLoaded(device), TRITONSERVER_ERROR_INTERNAL,
std::string("attempt to load model '") + Name() + "' on device '" +
device + "' more than once");
LOG_MESSAGE(
TRITONSERVER_LOG_VERBOSE, (std::string("Openvino runtime: ") +
std::to_string(OPENVINO_VERSION_MAJOR) + "." +
std::to_string(OPENVINO_VERSION_MINOR) + "." +
std::to_string(OPENVINO_VERSION_PATCH))
.c_str());
LOG_MESSAGE(
TRITONSERVER_LOG_VERBOSE,
(std::string("Device info: ") +
ConvertVersionMapToString(ov_core_.get_versions(device)))
.c_str());
RETURN_IF_OPENVINO_ASSIGN_ERROR(
compiled_model_[device],
ov_core_.compile_model(ov_model_, device, property), "loading model");
return nullptr; // success
}
TRITONSERVER_Error*
ModelState::CreateInferRequest(
const std::string& device, ov::InferRequest* infer_request)
{
RETURN_IF_OPENVINO_ASSIGN_ERROR(
*infer_request, compiled_model_[device].create_infer_request(),
"creating infer request object");
return nullptr;
}
bool
ModelState::ModelNotRead()
{
return !model_read_;
}
bool
ModelState::ModelNotLoaded(const std::string device)
{
auto itr = compiled_model_.find(device);
return (itr == compiled_model_.end());
}
TRITONSERVER_Error*
ModelState::ValidateConfigureModel()
{
size_t expected_input_cnt = 0;
{
triton::common::TritonJson::Value inputs;
if (model_config_.Find("input", &inputs)) {
expected_input_cnt = inputs.ArraySize();
}
}
RETURN_IF_ERROR(ValidateInputs(expected_input_cnt));
RETURN_IF_ERROR(ValidateOutputs());
return nullptr; // success
}
TRITONSERVER_Error*
ModelState::ValidateInputs(const size_t expected_input_cnt)
{
std::vector<ov::Output<ov::Node>> model_inputs;
RETURN_IF_OPENVINO_ASSIGN_ERROR(
model_inputs, ov_model_->inputs(), "getting input infos");
if (model_inputs.size() != expected_input_cnt) {
return TRITONSERVER_ErrorNew(
TRITONSERVER_ERROR_INVALID_ARG,
(std::string("unable to load model '") + Name() +
"', configuration expects " + std::to_string(expected_input_cnt) +
" inputs, model provides " + std::to_string(model_inputs.size()))
.c_str());
}
std::set<std::string> model_inputs_names;
std::map<std::string, size_t> model_inputs_name_to_index;
for (size_t i = 0; i < model_inputs.size(); i++) {
model_inputs_names.insert(model_inputs[i].get_any_name());
model_inputs_name_to_index[model_inputs[i].get_any_name()] = i;
}
ov::preprocess::PrePostProcessor ppp(ov_model_);
triton::common::TritonJson::Value ios;
RETURN_IF_ERROR(model_config_.MemberAsArray("input", &ios));
for (size_t i = 0; i < ios.ArraySize(); i++) {
triton::common::TritonJson::Value io;
RETURN_IF_ERROR(ios.IndexAsObject(i, &io));
std::string io_name;
RETURN_IF_ERROR(io.MemberAsString("name", &io_name));
std::string io_dtype;
RETURN_IF_ERROR(io.MemberAsString("data_type", &io_dtype));
if (model_inputs_names.find(io_name) == model_inputs_names.end()) {
RETURN_IF_ERROR(CheckAllowedModelInput(io, model_inputs_names));
}
auto openvino_element = ModelConfigDataTypeToOpenVINOElement(io_dtype);
if (openvino_element == ov::element::undefined) {
return TRITONSERVER_ErrorNew(
TRITONSERVER_ERROR_INTERNAL,
(std::string("unsupported datatype ") + io_dtype + " for input '" +
io_name + "' for model '" + Name() + "'")
.c_str());
}
RETURN_IF_OPENVINO_ERROR(
ppp.input(io_name).tensor().set_element_type(openvino_element),
std::string("setting precision for " + io_name).c_str());
// If a reshape is provided for the input then use that when
// validating that the model matches what is expected.
std::vector<int64_t> dims;
triton::common::TritonJson::Value reshape;
if (io.Find("reshape", &reshape)) {
RETURN_IF_ERROR(ParseShape(reshape, "shape", &dims));
} else {
RETURN_IF_ERROR(ParseShape(io, "dims", &dims));
}
ov::Shape input_shape;
ov::PartialShape partial_input_shape;
RETURN_IF_OPENVINO_ASSIGN_ERROR(
partial_input_shape,
model_inputs[model_inputs_name_to_index[io_name]].get_partial_shape(),
("retrieving original shapes from input " + io_name).c_str());
if (reshape_io_layers_) {
int index = (MaxBatchSize() != 0) ? 1 : 0;
for (const auto dim : dims) {
if (dim > 0) {
partial_input_shape[index++] = ov::Dimension(dim);
} else if (dim == -1) {
partial_input_shape[index++] = ov::Dimension::dynamic();
} else {
return TRITONSERVER_ErrorNew(
TRITONSERVER_ERROR_INTERNAL,
"openvino backend does not support dimensions values"
" other than `-1` or positive integers");
}
}
RETURN_IF_OPENVINO_ERROR(
ppp.input(io_name).tensor().set_shape(partial_input_shape),
std::string("setting shape for " + io_name).c_str());
} else {
RETURN_IF_ERROR(CompareDimsSupported(
Name(), io_name, partial_input_shape, dims, MaxBatchSize(),
false /* compare_exact */));
}
if (MaxBatchSize()) {
RETURN_IF_OPENVINO_ERROR(
ppp.input(io_name).tensor().set_layout("N..."),
std::string("setting layout for " + io_name).c_str());
}
}
// Model preprocessing
RETURN_IF_OPENVINO_ASSIGN_ERROR(
ov_model_, ppp.build(), "apply model input preprocessing");
// Configuring the model to handle the max_batch_size
if (MaxBatchSize()) {
RETURN_IF_OPENVINO_ERROR(
ov::set_batch(ov_model_, MaxBatchSize()), "setting max batch size");
}
return nullptr; // success
}
TRITONSERVER_Error*
ModelState::ValidateOutputs()
{
std::vector<ov::Output<ov::Node>> model_outputs;
RETURN_IF_OPENVINO_ASSIGN_ERROR(
model_outputs, ov_model_->outputs(), "getting output infos");
std::set<std::string> model_outputs_names;
std::map<std::string, size_t> model_outputs_name_to_index;
for (size_t i = 0; i < model_outputs.size(); i++) {
model_outputs_names.insert(model_outputs[i].get_any_name());
model_outputs_name_to_index[model_outputs[i].get_any_name()] = i;
}
ov::preprocess::PrePostProcessor ppp(ov_model_);
triton::common::TritonJson::Value ios;
RETURN_IF_ERROR(model_config_.MemberAsArray("output", &ios));
for (size_t i = 0; i < ios.ArraySize(); i++) {
triton::common::TritonJson::Value io;
RETURN_IF_ERROR(ios.IndexAsObject(i, &io));
std::string io_name;
RETURN_IF_ERROR(io.MemberAsString("name", &io_name));
std::string io_dtype;
RETURN_IF_ERROR(io.MemberAsString("data_type", &io_dtype));
if (model_outputs_names.find(io_name) == model_outputs_names.end()) {
RETURN_IF_ERROR(CheckAllowedModelOutput(io, model_outputs_names));
}
auto openvino_element = ModelConfigDataTypeToOpenVINOElement(io_dtype);
if (openvino_element == ov::element::undefined) {
return TRITONSERVER_ErrorNew(
TRITONSERVER_ERROR_INTERNAL,
(std::string("unsupported datatype ") + io_dtype + " for output '" +
io_name + "' for model '" + Name() + "'")
.c_str());
}
RETURN_IF_OPENVINO_ERROR(
ppp.output(io_name).tensor().set_element_type(openvino_element),
std::string("setting precision for " + io_name).c_str());
// If a reshape is provided for the output then use that when
// validating that the model matches what is expected.
std::vector<int64_t> dims;
triton::common::TritonJson::Value reshape;
if (io.Find("reshape", &reshape)) {
RETURN_IF_ERROR(ParseShape(reshape, "shape", &dims));
} else {
RETURN_IF_ERROR(ParseShape(io, "dims", &dims));
}
ov::PartialShape output_shape;
RETURN_IF_OPENVINO_ASSIGN_ERROR(
output_shape,
model_outputs[model_outputs_name_to_index[io_name]].get_partial_shape(),
("retrieving original shapes from output " + io_name).c_str());
RETURN_IF_ERROR(CompareDimsSupported(
Name(), io_name, output_shape, dims, MaxBatchSize(),
true /* compare_exact */));
}
// Model preprocessing
RETURN_IF_OPENVINO_ASSIGN_ERROR(
ov_model_, ppp.build(), "apply model output preprocessing");
return nullptr; // success
}
TRITONSERVER_Error*
ModelState::AutoCompleteConfig()
{
// Read OV model for autocomplete
std::string artifact_name;
RETURN_IF_ERROR(
ModelConfig().MemberAsString("default_model_filename", &artifact_name));
std::string model_path;
THROW_IF_BACKEND_INSTANCE_ERROR(ReadModel(artifact_name, &model_path));
model_read_ = false; // Re-read model after autocomplete
// Get OV model inputs and outputs
std::vector<ov::Output<ov::Node>> model_inputs;
std::vector<ov::Output<ov::Node>> model_outputs;
RETURN_IF_OPENVINO_ASSIGN_ERROR(
model_inputs, ov_model_->inputs(), "getting input infos");
RETURN_IF_OPENVINO_ASSIGN_ERROR(
model_outputs, ov_model_->outputs(), "getting output infos");
// Autocomplete batching
RETURN_IF_ERROR(AutoCompleteBatching(model_inputs, model_outputs));
// Autocomplete input
RETURN_IF_ERROR(AutoCompleteInputOrOutput("input", model_inputs));
// Autocomplete output
RETURN_IF_ERROR(AutoCompleteInputOrOutput("output", model_outputs));
return nullptr; // success
}
TRITONSERVER_Error*
ModelState::AutoCompleteBatching(
const std::vector<ov::Output<ov::Node>>& ov_inputs,
const std::vector<ov::Output<ov::Node>>& ov_outputs)
{
// Determine batching support from model layout
bool support_batching = true;
{
for (const std::vector<ov::Output<ov::Node>>& ov_ios :
{ov_inputs, ov_outputs}) {
for (const ov::Output<ov::Node>& ov_io : ov_ios) {
// Get layout of the OV input/output
ov::Layout ov_layout = ov::layout::get_layout(ov_io);
// Check if this input/output support batching
if (!ov::layout::has_batch(ov_layout)) {
support_batching = false;
break;
}
}
if (!support_batching)
break;
}
}
if (support_batching) {
// The model layout support batching
// Autocomplete max_batch_size
if (MaxBatchSize() == 0) {
// Get default_max_batch_size from backend state
int max_batch_size = 0;
{
TRITONBACKEND_Backend* backend;
THROW_IF_BACKEND_INSTANCE_ERROR(
TRITONBACKEND_ModelBackend(TritonModel(), &backend));
void* state;
THROW_IF_BACKEND_INSTANCE_ERROR(
TRITONBACKEND_BackendState(backend, &state));
max_batch_size = reinterpret_cast<BackendConfiguration*>(state)
->default_max_batch_size_;
}
max_batch_size = std::max(max_batch_size, 1); // max_batch_size >= 1
// Set max_batch_size
triton::common::TritonJson::Value max_batch_size_json;
ModelConfig().Find("max_batch_size", &max_batch_size_json);
max_batch_size_json.SetInt(max_batch_size);
SetMaxBatchSize(max_batch_size);
// Advise user to specify max_batch_size
LOG_MESSAGE(
TRITONSERVER_LOG_WARN,
(std::string(
"autofilled max_batch_size to " +
std::to_string(max_batch_size) + " for model '") +
Name() +
"' since batching is supported but no max_batch_size is "
"specified "
"in model configuration. Must specify max_batch_size to utilize "
"autofill with a larger max batch size")
.c_str());
}
// Autocomplete dynamic batching
if (MaxBatchSize() > 1) {
triton::common::TritonJson::Value tmp_json;
bool dynamic_batching_exist =
ModelConfig().Find("dynamic_batching", &tmp_json);
bool sequence_batching_exist =
ModelConfig().Find("sequence_batching", &tmp_json);
// Add dynamic batching if dynamic and sequence batching not provided
if (!dynamic_batching_exist && !sequence_batching_exist) {
triton::common::TritonJson::Value dynamic_batching_json(
ModelConfig(), triton::common::TritonJson::ValueType::OBJECT);
RETURN_IF_ERROR(ModelConfig().Add(
"dynamic_batching", std::move(dynamic_batching_json)));
}
}
} else if (MaxBatchSize() != 0) {
// The model layout does not support batching but max_batch_size != 0
// Not all openvino models include proper layout when batching is supported
// Warn the user about this discrepancy
LOG_MESSAGE(
TRITONSERVER_LOG_WARN,
(std::string("model layout for model ") + Name() +
" does not support batching while non-zero max_batch_size is "
"specified")
.c_str());
}
return nullptr; // success
}
TRITONSERVER_Error*
ModelState::AutoCompleteInputOrOutput(
const char* io_json_obj_name,
const std::vector<ov::Output<ov::Node>>& ov_ios)
{
// Read current input/output json
size_t curr_num_ios = 0;
triton::common::TritonJson::Value curr_ios_json;
bool ios_exist = ModelConfig().Find(io_json_obj_name, &curr_ios_json);
if (ios_exist) {
curr_num_ios += curr_ios_json.ArraySize();
}
// Autocomplete inputs/outputs if none is provided
if (curr_num_ios == 0) {
// New input/output json to be build
triton::common::TritonJson::Value new_ios_json(
ModelConfig(), triton::common::TritonJson::ValueType::ARRAY);
// Populate new input/output json from OV inputs/outputs
for (const ov::Output<ov::Node>& ov_io : ov_ios) {
// New individual input/output
triton::common::TritonJson::Value io_json(
ModelConfig(), triton::common::TritonJson::ValueType::OBJECT);
// Populate name
std::string io_name = ov_io.get_any_name();
RETURN_IF_ERROR(io_json.AddString("name", io_name));
// Populate data type
RETURN_IF_ERROR(io_json.AddString(
"data_type",
OpenVINOElementToModelConfigDataType(ov_io.get_element_type())));
// Find shape
ov::PartialShape io_shape;
RETURN_IF_OPENVINO_ASSIGN_ERROR(
io_shape, ov_io.get_partial_shape(),
("retrieving original shapes from" + std::string(io_json_obj_name) +
" " + io_name)
.c_str());
// Populate dims
triton::common::TritonJson::Value dims(
ModelConfig(), triton::common::TritonJson::ValueType::ARRAY);
for (size_t i = (MaxBatchSize() > 0) ? 1 : 0; i < io_shape.size(); i++) {
RETURN_IF_ERROR(dims.AppendInt(
io_shape.is_static() ? io_shape[i].get_length() : -1));
}
RETURN_IF_ERROR(io_json.Add("dims", std::move(dims)));
// Add individual input/output to new input/output
RETURN_IF_ERROR(new_ios_json.Append(std::move(io_json)));
}
// Add new input/output to config
if (ios_exist) {
curr_ios_json.Swap(new_ios_json);
} else {
ModelConfig().Add(io_json_obj_name, std::move(new_ios_json));
}
} else {
LOG_MESSAGE(
TRITONSERVER_LOG_INFO,
(std::string("skipping ") + io_json_obj_name +
" model configuration auto-complete for '" + Name() +
"': " + io_json_obj_name + " already specified")
.c_str());
}
return nullptr; // success
}
//
// ModelInstanceState
//
// State associated with a model instance. An object of this class is
// created and associated with each TRITONBACKEND_ModelInstance.
//
class ModelInstanceState : public BackendModelInstance {
public:
static TRITONSERVER_Error* Create(
ModelState* model_state,
TRITONBACKEND_ModelInstance* triton_model_instance,
ModelInstanceState** state);
// Get the state of the model that corresponds to this instance.
ModelState* StateForModel() const { return model_state_; }
// Execute...
void ProcessRequests(
TRITONBACKEND_Request** requests, const uint32_t request_count);
private:
ModelInstanceState(
ModelState* model_state,
TRITONBACKEND_ModelInstance* triton_model_instance);
TRITONSERVER_Error* Infer(
std::vector<TRITONBACKEND_Response*>* responses,
const uint32_t response_count);
TRITONSERVER_Error* SetInputTensors(
size_t total_batch_size, TRITONBACKEND_Request** requests,
const uint32_t request_count,
std::vector<TRITONBACKEND_Response*>* responses,
std::vector<const char*>* input_names);
TRITONSERVER_Error* ReadOutputTensors(
size_t total_batch_size, const std::vector<const char*>& output_names,
TRITONBACKEND_Request** requests, const uint32_t request_count,
std::vector<TRITONBACKEND_Response*>* responses);
TRITONSERVER_Error* ValidateOutputBatchSize(
std::vector<int64_t>* output_shape);
ModelState* model_state_;
std::string device_;
ov::InferRequest infer_request_;
size_t batch_pad_size_;
};
TRITONSERVER_Error*
ModelInstanceState::Create(
ModelState* model_state, TRITONBACKEND_ModelInstance* triton_model_instance,
ModelInstanceState** state)
{
try {
*state = new ModelInstanceState(model_state, triton_model_instance);
}
catch (const BackendModelInstanceException& ex) {
RETURN_ERROR_IF_TRUE(
ex.err_ == nullptr, TRITONSERVER_ERROR_INTERNAL,
std::string("unexpected nullptr in BackendModelInstanceException"));
RETURN_IF_ERROR(ex.err_);
}
catch (const ov::Exception& e) {
return TRITONSERVER_ErrorNew(
TRITONSERVER_ERROR_INTERNAL,
(std::string("ModelInstanceState::Create ov::Exception: ") + e.what())
.c_str());
}
catch (...) {
return TRITONSERVER_ErrorNew(
TRITONSERVER_ERROR_INTERNAL, "ModelInstanceState::Create exception");
}
return nullptr; // success
}
ModelInstanceState::ModelInstanceState(
ModelState* model_state, TRITONBACKEND_ModelInstance* triton_model_instance)
: BackendModelInstance(model_state, triton_model_instance),
model_state_(model_state), device_(model_state->TargetDevice()),
batch_pad_size_(0)
{
if ((Kind() != TRITONSERVER_INSTANCEGROUPKIND_CPU) &&
(Kind() != TRITONSERVER_INSTANCEGROUPKIND_AUTO)) {
throw triton::backend::BackendModelInstanceException(TRITONSERVER_ErrorNew(
TRITONSERVER_ERROR_INVALID_ARG,
(std::string("unable to load model '") + model_state_->Name() +
"', Triton OpenVINO backend supports only Kind CPU and AUTO")
.c_str()));
}
if (model_state_->ModelNotRead()) {
std::string model_path;
THROW_IF_BACKEND_INSTANCE_ERROR(model_state_->ParseParameters());
device_ = model_state->TargetDevice();
LOG_MESSAGE(
TRITONSERVER_LOG_INFO,
(std::string("Target device " + device_)).c_str());
THROW_IF_BACKEND_INSTANCE_ERROR(
model_state_->ReadModel(ArtifactFilename(), &model_path));
THROW_IF_BACKEND_INSTANCE_ERROR(model_state_->ValidateConfigureModel());
}
if (model_state_->ModelNotLoaded(device_)) {
THROW_IF_BACKEND_INSTANCE_ERROR(model_state_->ParseParameters(device_));
// enable dynamic batching in the model
std::pair<std::string, ov::Any> property =
ov::hint::allow_auto_batching(false);
if ((model_state_->MaxBatchSize() != 0) &&
(!model_state_->SkipDynamicBatchSize())) {
property = ov::hint::allow_auto_batching(true);
}
THROW_IF_BACKEND_INSTANCE_ERROR(model_state_->ConfigureOpenvinoCore());
THROW_IF_BACKEND_INSTANCE_ERROR(model_state_->LoadModel(device_, property));
}
THROW_IF_BACKEND_INSTANCE_ERROR(
model_state_->CreateInferRequest(device_, &infer_request_));
}