-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathneighborhood_search.jl
268 lines (213 loc) · 11.2 KB
/
neighborhood_search.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
abstract type AbstractNeighborhoodSearch end
@inline search_radius(search::AbstractNeighborhoodSearch) = search.search_radius
"""
initialize!(search::AbstractNeighborhoodSearch, x, y)
Initialize a neighborhood search with the two coordinate arrays `x` and `y`.
In general, the purpose of a neighborhood search is to find for one point in `x`
all points in `y` whose distances to that point are smaller than the search radius.
`x` and `y` are expected to be matrices, where the `i`-th column contains the coordinates
of point `i`. Note that `x` and `y` can be identical.
See also [`update!`](@ref).
"""
@inline initialize!(search::AbstractNeighborhoodSearch, x, y) = search
"""
update!(search::AbstractNeighborhoodSearch, x, y; points_moving = (true, true))
Update an already initialized neighborhood search with the two coordinate arrays `x` and `y`.
Like [`initialize!`](@ref), but reusing the existing data structures of the already
initialized neighborhood search.
When the points only moved a small distance since the last `update!` or `initialize!`,
this is significantly faster than `initialize!`.
Not all implementations support incremental updates.
If incremental updates are not possible for an implementation, `update!` will fall back
to a regular `initialize!`.
Some neighborhood searches might not need to update when only `x` changed since the last
`update!` or `initialize!` and `y` did not change. Pass `points_moving = (true, false)`
in this case to avoid unnecessary updates.
The first flag in `points_moving` indicates if points in `x` are moving.
The second flag indicates if points in `y` are moving.
!!! warning "Experimental Feature: Backend Specification"
The keyword argument `parallelization_backend` allows users to specify the
multithreading backend. This feature is currently considered experimental!
Possible parallelization backends are:
- [`ThreadsDynamicBackend`](@ref) to use `Threads.@threads :dynamic`
- [`ThreadsStaticBackend`](@ref) to use `Threads.@threads :static`
- [`PolyesterBackend`](@ref) to use `Polyester.@batch`
- `KernelAbstractions.Backend` to launch a GPU kernel
See also [`initialize!`](@ref).
"""
@inline function update!(search::AbstractNeighborhoodSearch, x, y;
points_moving = (true, true))
return search
end
"""
copy_neighborhood_search(search::AbstractNeighborhoodSearch, search_radius, n_points;
eachpoint = 1:n_points)
Create a new **uninitialized** neighborhood search of the same type and with the same
configuration options as `search`, but with a different search radius and number of points.
The [`TrivialNeighborhoodSearch`](@ref) also requires an iterator `eachpoint`, which most
of the time will be `1:n_points`. If the `TrivialNeighborhoodSearch` is never going to be
used, the keyword argument `eachpoint` can be ignored.
This is useful when a simulation code requires multiple neighborhood searches of the same
kind. One can then just pass an empty neighborhood search as a template and use
this function inside the simulation code to generate similar neighborhood searches with
different search radii and different numbers of points.
```jldoctest; filter = r"GridNeighborhoodSearch{2,.*"
# Template
nhs = GridNeighborhoodSearch{2}()
# Inside the simulation code, generate similar neighborhood searches
nhs1 = copy_neighborhood_search(nhs, 1.0, 100)
# output
GridNeighborhoodSearch{2, Float64, ...}(...)
```
"""
@inline function copy_neighborhood_search(search::AbstractNeighborhoodSearch,
search_radius, n_points; eachpoint = 1:n_points)
return nothing
end
"""
PeriodicBox(; min_corner, max_corner)
Define a rectangular (axis-aligned) periodic domain.
# Keywords
- `min_corner`: Coordinates of the domain corner in negative coordinate directions.
- `max_corner`: Coordinates of the domain corner in positive coordinate directions.
"""
struct PeriodicBox{NDIMS, ELTYPE}
min_corner :: SVector{NDIMS, ELTYPE}
max_corner :: SVector{NDIMS, ELTYPE}
size :: SVector{NDIMS, ELTYPE}
function PeriodicBox(; min_corner, max_corner)
min_corner_ = SVector(Tuple(min_corner))
max_corner_ = SVector(Tuple(max_corner))
new{length(min_corner), eltype(min_corner)}(min_corner_, max_corner_,
max_corner_ - min_corner_)
end
end
"""
foreach_point_neighbor(f, system_coords, neighbor_coords, neighborhood_search;
points = axes(system_coords, 2), parallel = true)
Loop for each point in `system_coords` over all points in `neighbor_coords` whose distances
to that point are smaller than the search radius and execute the function `f(i, j, pos_diff, d)`,
where
- `i` is the column index of the point in `system_coords`,
- `j` the column index of the neighbor in `neighbor_coords`,
- `pos_diff` the vector ``x - y`` where ``x`` denotes the coordinates of the point
(`system_coords[:, i]`) and ``y`` the coordinates of the neighbor (`neighbor_coords[:, j]`),
- `d` the distance between `x` and `y`.
The `neighborhood_search` must have been initialized or updated with `system_coords`
as first coordinate array and `neighbor_coords` as second coordinate array.
Note that `system_coords` and `neighbor_coords` can be identical.
# Arguments
- `f`: The function explained above.
- `system_coords`: A matrix where the `i`-th column contains the coordinates of point `i`.
- `neighbor_coords`: A matrix where the `j`-th column contains the coordinates of point `j`.
- `neighborhood_search`: A neighborhood search initialized or updated with `system_coords`
as first coordinate array and `neighbor_coords` as second
coordinate array.
# Keywords
- `points`: Loop over these point indices. By default all columns of `system_coords`.
- `parallel=true`: Run the outer loop over `points` thread-parallel.
See also [`initialize!`](@ref), [`update!`](@ref).
"""
function foreach_point_neighbor(f::T, system_coords, neighbor_coords, neighborhood_search;
parallel::Union{Bool, ParallelizationBackend} = true,
points = axes(system_coords, 2)) where {T}
# The type annotation above is to make Julia specialize on the type of the function.
# Otherwise, unspecialized code will cause a lot of allocations
# and heavily impact performance.
# See https://docs.julialang.org/en/v1/manual/performance-tips/#Be-aware-of-when-Julia-avoids-specializing
if parallel isa Bool
# When `false` is passed, run serially. When `true` is passed, run either a
# threaded loop with `Polyester.@batch`, or, when `system_coords` is a GPU array,
# launch the loop as a kernel on the GPU.
parallel_ = Val(parallel)
elseif parallel isa ParallelizationBackend
# When a `KernelAbstractions.Backend` is passed, launch the loop as a GPU kernel
# on this backend. This is useful to test the GPU code on the CPU by passing
# `parallel = KernelAbstractions.CPU()`, even though `system_coords isa Array`.
parallel_ = parallel
end
foreach_point_neighbor(f, system_coords, neighbor_coords, neighborhood_search, points,
parallel_)
end
@inline function foreach_point_neighbor(f, system_coords, neighbor_coords,
neighborhood_search, points, parallel::Val{true})
# Explicit bounds check before the hot loop (or GPU kernel)
@boundscheck checkbounds(system_coords, ndims(neighborhood_search), points)
@threaded system_coords for point in points
# Now we can assume that `point` is inbounds
@inbounds foreach_neighbor(f, system_coords, neighbor_coords,
neighborhood_search, point)
end
return nothing
end
# When a `KernelAbstractions.Backend` is passed, launch a GPU kernel on this backend
@inline function foreach_point_neighbor(f, system_coords, neighbor_coords,
neighborhood_search, points,
backend::ParallelizationBackend)
# Explicit bounds check before the hot loop (or GPU kernel)
@boundscheck checkbounds(system_coords, ndims(neighborhood_search), points)
@threaded backend for point in points
# Now we can assume that `point` is inbounds
@inbounds foreach_neighbor(f, system_coords, neighbor_coords,
neighborhood_search, point)
end
return nothing
end
@inline function foreach_point_neighbor(f, system_coords, neighbor_coords,
neighborhood_search, points, parallel::Val{false})
# Explicit bounds check before the hot loop
@boundscheck checkbounds(system_coords, ndims(neighborhood_search), points)
for point in points
# Now we can assume that `point` is inbounds
@inbounds foreach_neighbor(f, system_coords, neighbor_coords,
neighborhood_search, point)
end
return nothing
end
@inline function foreach_neighbor(f, system_coords, neighbor_system_coords,
neighborhood_search, point;
search_radius = search_radius(neighborhood_search))
(; periodic_box) = neighborhood_search
point_coords = extract_svector(system_coords, Val(ndims(neighborhood_search)), point)
for neighbor in eachneighbor(point_coords, neighborhood_search)
neighbor_coords = extract_svector(neighbor_system_coords,
Val(ndims(neighborhood_search)), neighbor)
pos_diff = point_coords - neighbor_coords
distance2 = dot(pos_diff, pos_diff)
pos_diff, distance2 = compute_periodic_distance(pos_diff, distance2, search_radius,
periodic_box)
if distance2 <= search_radius^2
distance = sqrt(distance2)
# Inline to avoid loss of performance
# compared to not using `foreach_point_neighbor`.
@inline f(point, neighbor, pos_diff, distance)
end
end
end
@inline function compute_periodic_distance(pos_diff, distance2, search_radius,
periodic_box::Nothing)
return pos_diff, distance2
end
@inline function compute_periodic_distance(pos_diff, distance2, search_radius, periodic_box)
if distance2 > search_radius^2
# Use periodic `pos_diff`
pos_diff -= periodic_box.size .* round.(pos_diff ./ periodic_box.size)
distance2 = dot(pos_diff, pos_diff)
end
return pos_diff, distance2
end
# TODO export?
@inline function periodic_coords(coords, periodic_box)
(; min_corner, size) = periodic_box
# Move coordinates into the periodic box
box_offset = floor.((coords .- min_corner) ./ size)
return coords - box_offset .* size
end
@inline function periodic_coords(coords, periodic_box::Nothing)
return coords
end
function CellListMapNeighborhoodSearch(NDIMS; search_radius = 1.0,
points_equal_neighbors = false)
error("CellListMap.jl has to be imported to use `CellListMapNeighborhoodSearch`. " *
"If you did import CellListMap.jl, please try `]instantiate`.")
end