diff --git a/.github/workflows/ci.yml b/.github/workflows/ci.yml index 592f24e8..3ac6d439 100644 --- a/.github/workflows/ci.yml +++ b/.github/workflows/ci.yml @@ -79,7 +79,7 @@ jobs: if: matrix.os == 'ubuntu-latest' && matrix.version == '1' uses: julia-actions/julia-processcoverage@v1 with: - directories: src,test + directories: src,ext,test - name: Upload coverage report to Codecov # Only run coverage in one Job (Ubuntu and latest Julia version) diff --git a/Project.toml b/Project.toml index 7c5047fc..10773193 100644 --- a/Project.toml +++ b/Project.toml @@ -13,9 +13,16 @@ Polyester = "f517fe37-dbe3-4b94-8317-1923a5111588" Reexport = "189a3867-3050-52da-a836-e630ba90ab69" StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" +[weakdeps] +CellListMap = "69e1c6dd-3888-40e6-b3c8-31ac5f578864" + +[extensions] +PointNeighborsCellListMapExt = "CellListMap" + [compat] Adapt = "4" Atomix = "1" +CellListMap = "0.9" GPUArraysCore = "0.2" KernelAbstractions = "0.9" LinearAlgebra = "1" diff --git a/benchmarks/plot.jl b/benchmarks/plot.jl index 976cf045..5832984c 100644 --- a/benchmarks/plot.jl +++ b/benchmarks/plot.jl @@ -1,5 +1,6 @@ using Plots using BenchmarkTools +import CellListMap # Generate a rectangular point cloud include("../test/point_cloud.jl") @@ -38,9 +39,15 @@ plot_benchmarks(benchmark_count_neighbors, (10, 10), 3) function plot_benchmarks(benchmark, n_points_per_dimension, iterations; parallel = true, title = "", seed = 1, perturbation_factor_position = 1.0) - neighborhood_searches_names = ["TrivialNeighborhoodSearch";; - "GridNeighborhoodSearch";; - "PrecomputedNeighborhoodSearch"] + neighborhood_searches_names = [ + "TrivialNeighborhoodSearch", + "GridNeighborhoodSearch", + "PrecomputedNeighborhoodSearch"] + + if length(n_points_per_dimension) > 1 + # Not implemented for 1D + push!(neighborhood_searches_names, "CellListMapNeighborhoodSearch") + end # Multiply number of points in each iteration (roughly) by this factor scaling_factor = 4 @@ -65,6 +72,12 @@ function plot_benchmarks(benchmark, n_points_per_dimension, iterations; PrecomputedNeighborhoodSearch{NDIMS}(; search_radius, n_points = n_particles) ] + if NDIMS > 1 + # Not implemented for 1D + push!(neighborhood_searches, + CellListMapNeighborhoodSearch(NDIMS; search_radius)) + end + for i in eachindex(neighborhood_searches) neighborhood_search = neighborhood_searches[i] initialize!(neighborhood_search, coordinates, coordinates) @@ -77,10 +90,12 @@ function plot_benchmarks(benchmark, n_points_per_dimension, iterations; end end + labels = reshape(neighborhood_searches_names, (1, length(neighborhood_searches_names))) + plot(n_particles_vec, times, xaxis = :log, yaxis = :log, xticks = (n_particles_vec, n_particles_vec), xlabel = "#particles", ylabel = "Runtime [s]", legend = :outerright, size = (750, 400), dpi = 200, - label = neighborhood_searches_names, title = title) + label = labels, title = title) end diff --git a/ext/PointNeighborsCellListMapExt.jl b/ext/PointNeighborsCellListMapExt.jl new file mode 100644 index 00000000..7b290aa7 --- /dev/null +++ b/ext/PointNeighborsCellListMapExt.jl @@ -0,0 +1,189 @@ +module PointNeighborsCellListMapExt + +using PointNeighbors +using CellListMap: CellListMap, CellList, CellListPair + +""" + CellListMapNeighborhoodSearch(NDIMS; search_radius = 1.0, points_equal_neighbors = false) + +Neighborhood search based on the package [CellListMap.jl](https://github.com/m3g/CellListMap.jl). +This package provides a similar implementation to the [`GridNeighborhoodSearch`](@ref) +with [`FullGridCellList`](@ref), but with better support for periodic boundaries. +This is just a wrapper to use CellListMap.jl with the PointNeighbors.jl API. +Note that periodic boundaries are not yet supported. + +# Arguments +- `NDIMS`: Number of dimensions. + +# Keywords +- `search_radius = 1.0`: The fixed search radius. The default of `1.0` is useful together + with [`copy_neighborhood_search`](@ref). +- `points_equal_neighbors = false`: If `true`, a `CellListMap.CellList` is used instead of + a `CellListMap.CellListPair`. This requires that `x === y` + in [`initialize!`](@ref) and [`update!`](@ref). + This option exists only for benchmarking purposes. + It makes the main loop awkward because CellListMap.jl + only computes pairs with `i < j` and PointNeighbors.jl + computes all pairs, so we have to manually use symmetry + to add the missing pairs. + +!!! warning "Experimental implementation" + This is an experimental feature and may change in future releases. +""" +mutable struct CellListMapNeighborhoodSearch{CL, B} + cell_list::CL + # Note that we need this struct to be mutable to replace the box in `update!` + box::B + + # Add dispatch on `NDIMS` to avoid method overwriting of the function in PointNeighbors.jl + function PointNeighbors.CellListMapNeighborhoodSearch(NDIMS::Integer; + search_radius = 1.0, + points_equal_neighbors = false) + # Create a cell list with only one point and resize it later + x = zeros(NDIMS, 1) + box = CellListMap.Box(CellListMap.limits(x, x), search_radius) + + if points_equal_neighbors + cell_list = CellListMap.CellList(x, box) + else + cell_list = CellListMap.CellList(x, x, box) + end + + return new{typeof(cell_list), typeof(box)}(cell_list, box) + end +end + +function PointNeighbors.search_radius(neighborhood_search::CellListMapNeighborhoodSearch) + return neighborhood_search.box.cutoff +end + +function Base.ndims(neighborhood_search::CellListMapNeighborhoodSearch) + return length(neighborhood_search.box.cell_size) +end + +function PointNeighbors.initialize!(neighborhood_search::CellListMapNeighborhoodSearch, + x::AbstractMatrix, y::AbstractMatrix) + PointNeighbors.update!(neighborhood_search, x, y) +end + +# When `x !== y`, a `CellListPair` must be used +function PointNeighbors.update!(neighborhood_search::CellListMapNeighborhoodSearch{<:CellListPair}, + x::AbstractMatrix, y::AbstractMatrix; + points_moving = (true, true)) + (; cell_list) = neighborhood_search + + # Resize box + box = CellListMap.Box(CellListMap.limits(x, y), neighborhood_search.box.cutoff) + neighborhood_search.box = box + + # Resize and update cell list + CellListMap.UpdateCellList!(x, y, box, cell_list) + + # Recalculate number of batches for multithreading + CellListMap.set_number_of_batches!(cell_list) + + return neighborhood_search +end + +# When `points_equal_neighbors == true`, a `CellList` is used and `x` must be equal to `y` +function PointNeighbors.update!(neighborhood_search::CellListMapNeighborhoodSearch{<:CellList}, + x::AbstractMatrix, y::AbstractMatrix; + points_moving = (true, true)) + (; cell_list) = neighborhood_search + + @assert x===y "When `points_equal_neighbors == true`, `x` must be equal to `y`" + + # Resize box + box = CellListMap.Box(CellListMap.limits(x), neighborhood_search.box.cutoff) + neighborhood_search.box = box + + # Resize and update cell list + CellListMap.UpdateCellList!(x, box, cell_list) + + # Recalculate number of batches for multithreading + CellListMap.set_number_of_batches!(cell_list) + + # Due to https://github.com/m3g/CellListMap.jl/issues/106, we have to update again + CellListMap.UpdateCellList!(x, box, cell_list) + + return neighborhood_search +end + +# The type annotation is to make Julia specialize on the type of the function. +# Otherwise, unspecialized code will cause a lot of allocations +# and heavily impact performance. +# See https://docs.julialang.org/en/v1/manual/performance-tips/#Be-aware-of-when-Julia-avoids-specializing +function PointNeighbors.foreach_point_neighbor(f::T, system_coords, neighbor_coords, + neighborhood_search::CellListMapNeighborhoodSearch{<:CellListPair}; + points = axes(system_coords, 2), + parallel = true) where {T} + (; cell_list, box) = neighborhood_search + + # `0` is the returned output, which we don't use. + # Note that `parallel !== false` is `true` when `parallel` is a PointNeighbors backend. + CellListMap.map_pairwise!(0, box, cell_list, + parallel = parallel !== false) do x, y, i, j, d2, output + # Skip all indices not in `points` + i in points || return output + + pos_diff = x - y + distance = sqrt(d2) + + @inline f(i, j, pos_diff, distance) + + return output + end + + return nothing +end + +function PointNeighbors.foreach_point_neighbor(f::T, system_coords, neighbor_coords, + neighborhood_search::CellListMapNeighborhoodSearch{<:CellList}; + points = axes(system_coords, 2), + parallel = true) where {T} + (; cell_list, box) = neighborhood_search + + # `0` is the returned output, which we don't use. + # Note that `parallel !== false` is `true` when `parallel` is a PointNeighbors backend. + CellListMap.map_pairwise!(0, box, cell_list, + parallel = parallel !== false) do x, y, i, j, d2, output + # Skip all indices not in `points` + i in points || return output + + pos_diff = x - y + distance = sqrt(d2) + + # When `points_equal_neighbors == true`, a `CellList` is used. + # With a `CellList`, we only see each pair once and have to use symmetry manually. + @inline f(i, j, pos_diff, distance) + @inline f(j, i, -pos_diff, distance) + + return output + end + + # With a `CellList`, only pairs with `i < j` are considered. + # We can cover `i > j` with symmetry above, but `i = j` has to be computed separately. + PointNeighbors.@threaded system_coords for point in points + zero_pos_diff = zero(PointNeighbors.SVector{ndims(neighborhood_search), + eltype(system_coords)}) + @inline f(point, point, zero_pos_diff, zero(eltype(system_coords))) + end + + return nothing +end + +function PointNeighbors.copy_neighborhood_search(nhs::CellListMapNeighborhoodSearch{<:CellListPair}, + search_radius, n_points; + eachpoint = 1:n_points) + return PointNeighbors.CellListMapNeighborhoodSearch(ndims(nhs); search_radius, + points_equal_neighbors = false) +end + +function PointNeighbors.copy_neighborhood_search(nhs::CellListMapNeighborhoodSearch{<:CellList}, + search_radius, n_points; + eachpoint = 1:n_points) + return PointNeighbors.CellListMapNeighborhoodSearch(ndims(nhs); search_radius, + points_equal_neighbors = true) +end + +end diff --git a/src/PointNeighbors.jl b/src/PointNeighbors.jl index 22ef3893..11758a19 100644 --- a/src/PointNeighbors.jl +++ b/src/PointNeighbors.jl @@ -21,7 +21,8 @@ include("nhs_precomputed.jl") include("gpu.jl") export foreach_point_neighbor, foreach_neighbor -export TrivialNeighborhoodSearch, GridNeighborhoodSearch, PrecomputedNeighborhoodSearch +export TrivialNeighborhoodSearch, GridNeighborhoodSearch, PrecomputedNeighborhoodSearch, + CellListMapNeighborhoodSearch export DictionaryCellList, FullGridCellList export ParallelUpdate, SemiParallelUpdate, SerialUpdate export initialize!, update!, initialize_grid!, update_grid! diff --git a/src/neighborhood_search.jl b/src/neighborhood_search.jl index 9c50dd19..955ef591 100644 --- a/src/neighborhood_search.jl +++ b/src/neighborhood_search.jl @@ -260,3 +260,9 @@ end @inline function periodic_coords(coords, periodic_box::Nothing) return coords end + +function CellListMapNeighborhoodSearch(NDIMS; search_radius = 1.0, + points_equal_neighbors = false) + error("CellListMap.jl has to be imported to use `CellListMapNeighborhoodSearch`. " * + "If you did import CellListMap.jl, please try `]instantiate`.") +end diff --git a/test/Project.toml b/test/Project.toml index c826e5bc..1533b1ae 100644 --- a/test/Project.toml +++ b/test/Project.toml @@ -1,5 +1,6 @@ [deps] BenchmarkTools = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf" +CellListMap = "69e1c6dd-3888-40e6-b3c8-31ac5f578864" Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80" Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40" @@ -7,6 +8,7 @@ TrixiParticles = "66699cd8-9c01-4e9d-a059-b96c86d16b3a" [compat] BenchmarkTools = "1" +CellListMap = "0.9" Plots = "1" Test = "1" TrixiParticles = "0.2" diff --git a/test/neighborhood_search.jl b/test/neighborhood_search.jl index 94590aa8..47d84b2a 100644 --- a/test/neighborhood_search.jl +++ b/test/neighborhood_search.jl @@ -91,6 +91,7 @@ # Run this for every neighborhood search @testset "$(names[j])" for j in eachindex(names) nhs = neighborhood_searches[j] + @test PointNeighbors.search_radius(nhs) == search_radius initialize!(nhs, coords, coords) @@ -175,7 +176,10 @@ max_corner, search_radius, backend = Vector{Vector{Int}})), - PrecomputedNeighborhoodSearch{NDIMS}(; search_radius, n_points) + PrecomputedNeighborhoodSearch{NDIMS}(; search_radius, n_points), + CellListMapNeighborhoodSearch(NDIMS; search_radius), + CellListMapNeighborhoodSearch(NDIMS; search_radius, + points_equal_neighbors = true) ] names = [ @@ -184,7 +188,9 @@ "`GridNeighborhoodSearch` with `FullGridCellList` with `DynamicVectorOfVectors` and `ParallelUpdate`", "`GridNeighborhoodSearch` with `FullGridCellList` with `DynamicVectorOfVectors` and `SemiParallelUpdate`", "`GridNeighborhoodSearch` with `FullGridCellList` with `Vector{Vector}`", - "`PrecomputedNeighborhoodSearch`" + "`PrecomputedNeighborhoodSearch`", + "`CellListMapNeighborhoodSearch`", + "`CellListMapNeighborhoodSearch` with `points_equal_neighbors = true`" ] # Also test copied templates @@ -199,7 +205,9 @@ GridNeighborhoodSearch{NDIMS}(cell_list = FullGridCellList(; min_corner, max_corner, backend = Vector{Vector{Int32}})), - PrecomputedNeighborhoodSearch{NDIMS}() + PrecomputedNeighborhoodSearch{NDIMS}(), + CellListMapNeighborhoodSearch(NDIMS), + CellListMapNeighborhoodSearch(NDIMS, points_equal_neighbors = true) ] copied_nhs = copy_neighborhood_search.(template_nhs, search_radius, n_points) append!(neighborhood_searches, copied_nhs) @@ -209,6 +217,7 @@ @testset "$(names[i])" for i in eachindex(names) nhs = neighborhood_searches[i] + @test PointNeighbors.search_radius(nhs) == search_radius # Initialize with `seed = 1` initialize!(nhs, coords_initialize, coords_initialize) diff --git a/test/test_util.jl b/test/test_util.jl index 07a3ac98..a5c19110 100644 --- a/test/test_util.jl +++ b/test/test_util.jl @@ -3,6 +3,9 @@ using Test: @test, @testset, @test_throws using PointNeighbors +# Load `PointNeighborsCellListMapExt` +import CellListMap + """ @trixi_testset "name of the testset" #= code to test #=