-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdecoder.py
50 lines (40 loc) · 2.51 KB
/
decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# Code originally from https://colab.research.google.com/github/tensorflow/examples/blob/master/community/en/transformer_chatbot.ipynb
import tensorflow as tf
from positional_encoding import PositionalEncoding
from attention import MultiHeadAttention
def decoder_layer(units, d_model, d_enc_outputs, num_heads, dropout, name="decoder_layer"):
inputs = tf.keras.Input(shape=(None, d_model), name="inputs")
enc_outputs = tf.keras.Input(shape=(None, d_enc_outputs), name="encoder_outputs")
look_ahead_mask = tf.keras.Input(shape=(1, None, None), name="look_ahead_mask")
attention1 = MultiHeadAttention(d_model, num_heads, name="attention_1")(
inputs={"query": inputs, "key": inputs, "value": inputs, "mask": look_ahead_mask}
)
attention1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)(attention1 + inputs)
attention2 = MultiHeadAttention(d_model, num_heads, name="attention_2")(
inputs={"query": attention1, "key": enc_outputs, "value": enc_outputs}
)
attention2 = tf.keras.layers.Dropout(rate=dropout)(attention2)
attention2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)(attention2 + attention1)
outputs = tf.keras.layers.Dense(units=units, activation="relu")(attention2)
outputs = tf.keras.layers.Dense(units=d_model)(outputs)
outputs = tf.keras.layers.Dropout(rate=dropout)(outputs)
outputs = tf.keras.layers.LayerNormalization(epsilon=1e-6)(outputs + attention2)
return tf.keras.Model(inputs=[inputs, enc_outputs, look_ahead_mask], outputs=outputs, name=name)
def decoder(vocab_size, num_layers, units, d_model, d_enc_outputs, num_heads, dropout, name="decoder"):
inputs = tf.keras.Input(shape=(None,), name="inputs")
enc_outputs = tf.keras.Input(shape=(None, d_enc_outputs), name="encoder_outputs")
look_ahead_mask = tf.keras.Input(shape=(1, None, None), name="look_ahead_mask")
embeddings = tf.keras.layers.Embedding(vocab_size, d_model)(inputs)
embeddings *= tf.math.sqrt(tf.cast(d_model, tf.float32))
embeddings = PositionalEncoding(d_model)(embeddings)
outputs = tf.keras.layers.Dropout(rate=dropout)(embeddings)
for i in range(num_layers):
outputs = decoder_layer(
units=units,
d_model=d_model,
d_enc_outputs=d_enc_outputs,
num_heads=num_heads,
dropout=dropout,
name="decoder_layer_{}".format(i),
)(inputs=[outputs, enc_outputs, look_ahead_mask])
return tf.keras.Model(inputs=[inputs, enc_outputs, look_ahead_mask], outputs=outputs, name=name)