Skip to content

Latest commit

 

History

History
58 lines (40 loc) · 2.11 KB

README_install.md

File metadata and controls

58 lines (40 loc) · 2.11 KB

Pedestrian Detection Sensitivity Analysis

This project performs inference of baseline detection methods on datasets, both synthetic and real, and performs a sensitivity analysis on the results.

Given input detection models (RGB --> (x0,y0,x1,y1) it aims at :

  • Analyzing their sensitivity toward parameters such as
    • frame parameters (luminosity, weather, camera angle, camera distance)
    • boundig box parameters (height, occlusion)
  • Provide an exhaustive benchmark on MoTSynth and EuroCityPerson datasets to make a proof of concept of the method, yielding empirical results indicating what works and what does not work in the synthetic dataset.

How to use this project

Assuming each twincity folder is stored in /home/raphael/work/datasets/twincity-Unreal/v5 :

Run python main.py -d twincity -r /home/raphael/work/datasets/twincity-Unreal/v5 --max_samples 50 -output results_new -frame -gt --plot_image

Datasets used

  • Download motsynth
  • Download eurocityperson (research purpose only)

For more information on EuroCityPerson and its license see https://eurocity-dataset.tudelft.nl/
For more information on MoTSynth and its license see https://aimagelab.ing.unimore.it/imagelab/page.asp?IdPage=42

Other

Install & Datasets

Install

conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch torchmetrics tqdm pandas seaborn conda install -c conda-forge opencv This post did help https://discuss.pytorch.org/t/userwarning-cuda-initialization-cuda-unknown-error-this-may-be-due-to-an-incorrectly-set-up-environment-e-g-changing-env-variable-cuda-visible-devices-after-program-start-setting-the-available-devices-to-be-zero/129335/2 scikit-learn cpu conda install pytorch torchvision torchaudio -c pytorch See mmdet / mmcv for install

Datasets

  • PennFudan
    • Isgroup : ignore region ? (if not it generates false positives because good detector find each people in the group instead of just 1)
  • MoTSynth
    • ??
  • ECP
  • Twincity
    • ??
  • Twincity
    • Hendled Glitch via ignore regions : too big bbox or multiple colors

About filtering

typical / atypical above 50pix or not ?