|
| 1 | +# System Architecture |
| 2 | + |
| 3 | +## Overview |
| 4 | + |
| 5 | +The AWS Data Platform implements a modern, cloud-native architecture that combines real-time streaming, batch processing, and machine learning capabilities in a unified platform. |
| 6 | + |
| 7 | +## Architecture Principles |
| 8 | + |
| 9 | +### 1. Separation of Concerns |
| 10 | +- **Ingestion Layer**: Handles data intake from various sources |
| 11 | +- **Processing Layer**: Transforms and enriches data |
| 12 | +- **Storage Layer**: Persists data in appropriate formats |
| 13 | +- **Serving Layer**: Provides data to consumers |
| 14 | +- **Consumption Layer**: Enables analytics and ML workloads |
| 15 | + |
| 16 | +### 2. Scalability |
| 17 | +- Horizontal scaling for all components |
| 18 | +- Auto-scaling based on workload |
| 19 | +- Elastic compute resources |
| 20 | + |
| 21 | +### 3. Reliability |
| 22 | +- Multi-AZ deployments |
| 23 | +- Automated failover |
| 24 | +- Data replication and backups |
| 25 | + |
| 26 | +### 4. Security |
| 27 | +- Encryption at rest and in transit |
| 28 | +- IAM role-based access control |
| 29 | +- VPC isolation and security groups |
| 30 | +- AWS Secrets Manager for credentials |
| 31 | + |
| 32 | +## Component Architecture |
| 33 | + |
| 34 | +### Real-Time Streaming Layer |
| 35 | + |
| 36 | +``` |
| 37 | +Data Sources → Kinesis Data Streams → Lambda Functions → DynamoDB/S3 |
| 38 | + ↓ |
| 39 | + Kinesis Analytics → Real-time Dashboards |
| 40 | + ↓ |
| 41 | + Kinesis Firehose → S3 Data Lake |
| 42 | +``` |
| 43 | + |
| 44 | +**Components:** |
| 45 | +- **Kinesis Data Streams**: Ingests streaming data at scale |
| 46 | +- **Lambda Functions**: Serverless processing of stream records |
| 47 | +- **DynamoDB**: Low-latency storage for real-time data |
| 48 | +- **Kinesis Analytics**: SQL queries on streaming data |
| 49 | + |
| 50 | +### Batch Processing Layer |
| 51 | + |
| 52 | +``` |
| 53 | +S3 Data Lake → EMR Cluster → Processed Data → Redshift |
| 54 | + ↓ |
| 55 | + Glue ETL Jobs → Data Catalog |
| 56 | + ↓ |
| 57 | + Athena Queries → Analytics |
| 58 | +``` |
| 59 | + |
| 60 | +**Components:** |
| 61 | +- **EMR**: Distributed processing with Spark/Hadoop |
| 62 | +- **Glue ETL**: Serverless data transformation |
| 63 | +- **Athena**: Interactive SQL queries on S3 data |
| 64 | +- **Redshift**: Data warehouse for analytics |
| 65 | + |
| 66 | +### Machine Learning Layer |
| 67 | + |
| 68 | +``` |
| 69 | +Feature Store → SageMaker Training → Model Registry |
| 70 | + ↓ |
| 71 | + Model Endpoints → Inference API |
| 72 | + ↓ |
| 73 | + A/B Testing → Production |
| 74 | +``` |
| 75 | + |
| 76 | +**Components:** |
| 77 | +- **SageMaker**: End-to-end ML platform |
| 78 | +- **Feature Store**: Centralized feature management |
| 79 | +- **Model Registry**: Version control for ML models |
| 80 | +- **Endpoints**: Real-time and batch inference |
| 81 | + |
| 82 | +## Data Flow Patterns |
| 83 | + |
| 84 | +### 1. Lambda Architecture |
| 85 | +Combines batch and streaming processing: |
| 86 | +- **Speed Layer**: Real-time processing via Kinesis/Lambda |
| 87 | +- **Batch Layer**: Historical processing via EMR/Glue |
| 88 | +- **Serving Layer**: Unified view via Redshift/DynamoDB |
| 89 | + |
| 90 | +### 2. Kappa Architecture |
| 91 | +Streaming-first approach: |
| 92 | +- All data flows through Kinesis |
| 93 | +- Reprocessing via stream replay |
| 94 | +- Simplified architecture with single processing path |
| 95 | + |
| 96 | +### 3. Data Mesh |
| 97 | +Domain-oriented decentralization: |
| 98 | +- Domain-specific data products |
| 99 | +- Self-serve data platform |
| 100 | +- Federated governance |
| 101 | + |
| 102 | +## Technology Stack |
| 103 | + |
| 104 | +### Core Services |
| 105 | +| Component | Technology | Purpose | |
| 106 | +|-----------|------------|---------| |
| 107 | +| Streaming | Amazon Kinesis | Real-time data ingestion | |
| 108 | +| Compute | AWS Lambda, EMR | Data processing | |
| 109 | +| Storage | S3, DynamoDB, Redshift | Data persistence | |
| 110 | +| Analytics | Athena, QuickSight | Data analysis | |
| 111 | +| ML | SageMaker | Machine learning | |
| 112 | +| Orchestration | Step Functions, Airflow | Workflow management | |
| 113 | +| Monitoring | CloudWatch, X-Ray | Observability | |
| 114 | + |
| 115 | +### Programming Languages |
| 116 | +- **Python**: Primary language for all components |
| 117 | +- **SQL**: Data transformations and queries |
| 118 | +- **Spark**: Large-scale data processing |
| 119 | + |
| 120 | +### Data Formats |
| 121 | +- **Raw**: JSON, CSV, Parquet |
| 122 | +- **Processed**: Parquet, ORC |
| 123 | +- **Serving**: JSON, Avro |
| 124 | + |
| 125 | +## Network Architecture |
| 126 | + |
| 127 | +### VPC Design |
| 128 | +``` |
| 129 | +VPC (10.0.0.0/16) |
| 130 | +├── Public Subnets (10.0.1.0/24, 10.0.2.0/24) |
| 131 | +│ └── NAT Gateways, Load Balancers |
| 132 | +├── Private Subnets (10.0.10.0/24, 10.0.11.0/24) |
| 133 | +│ └── EMR, Lambda, ECS Tasks |
| 134 | +└── Database Subnets (10.0.20.0/24, 10.0.21.0/24) |
| 135 | + └── Redshift, RDS, ElastiCache |
| 136 | +``` |
| 137 | + |
| 138 | +### Security Groups |
| 139 | +- **EMR-Master-SG**: Controls access to EMR master node |
| 140 | +- **EMR-Worker-SG**: Inter-node communication |
| 141 | +- **Redshift-SG**: Database access control |
| 142 | +- **Lambda-SG**: Outbound only for Lambda functions |
| 143 | + |
| 144 | +## High Availability |
| 145 | + |
| 146 | +### Multi-AZ Deployment |
| 147 | +- Redshift clusters span multiple AZs |
| 148 | +- DynamoDB global tables for cross-region replication |
| 149 | +- S3 cross-region replication for critical data |
| 150 | + |
| 151 | +### Disaster Recovery |
| 152 | +- **RPO**: 1 hour for batch data, real-time for streaming |
| 153 | +- **RTO**: 2 hours for full platform recovery |
| 154 | +- Automated backups and snapshots |
| 155 | +- Infrastructure as code for rapid redeployment |
| 156 | + |
| 157 | +## Performance Optimization |
| 158 | + |
| 159 | +### Caching Strategy |
| 160 | +- **CloudFront**: CDN for static content |
| 161 | +- **ElastiCache**: Redis for application caching |
| 162 | +- **S3 Intelligent-Tiering**: Automatic storage optimization |
| 163 | + |
| 164 | +### Data Partitioning |
| 165 | +- **S3**: Partitioned by year/month/day/hour |
| 166 | +- **Redshift**: Distribution and sort keys optimization |
| 167 | +- **DynamoDB**: Partition key design for even distribution |
| 168 | + |
| 169 | +## Cost Optimization |
| 170 | + |
| 171 | +### Resource Management |
| 172 | +- **Auto-scaling**: Scale based on actual usage |
| 173 | +- **Spot Instances**: For EMR worker nodes |
| 174 | +- **Reserved Instances**: For predictable workloads |
| 175 | +- **S3 Lifecycle Policies**: Archive old data to Glacier |
| 176 | + |
| 177 | +### Monitoring |
| 178 | +- **Cost Explorer**: Track spending trends |
| 179 | +- **Budgets**: Alert on cost overruns |
| 180 | +- **Trusted Advisor**: Optimization recommendations |
| 181 | + |
| 182 | +## Security Architecture |
| 183 | + |
| 184 | +### Data Protection |
| 185 | +- **Encryption**: AES-256 for data at rest |
| 186 | +- **TLS 1.2+**: For data in transit |
| 187 | +- **KMS**: Key management service integration |
| 188 | + |
| 189 | +### Access Control |
| 190 | +- **IAM Roles**: Service-specific permissions |
| 191 | +- **Lake Formation**: Fine-grained data access |
| 192 | +- **Secrets Manager**: Credential rotation |
| 193 | + |
| 194 | +### Compliance |
| 195 | +- **CloudTrail**: Audit logging |
| 196 | +- **Config**: Compliance monitoring |
| 197 | +- **GuardDuty**: Threat detection |
| 198 | + |
| 199 | +## Scalability Limits |
| 200 | + |
| 201 | +### Streaming |
| 202 | +- Kinesis: 1MB/sec or 1000 records/sec per shard |
| 203 | +- Lambda: 1000 concurrent executions (soft limit) |
| 204 | +- DynamoDB: 40,000 RCU/WCU per table |
| 205 | + |
| 206 | +### Batch Processing |
| 207 | +- EMR: 500 nodes per cluster |
| 208 | +- Glue: 100 DPU per job |
| 209 | +- Redshift: 128 nodes per cluster |
| 210 | + |
| 211 | +### Storage |
| 212 | +- S3: Unlimited storage |
| 213 | +- Single object: 5TB maximum |
| 214 | +- DynamoDB item: 400KB maximum |
0 commit comments