Skip to content

Commit ee69362

Browse files
committed
Add comprehensive documentation
- System architecture documentation - Quick start guide for 15-minute deployment - Streaming pipeline implementation guide - Documentation structure and navigation - Code examples and best practices
1 parent dfff943 commit ee69362

File tree

4 files changed

+1145
-0
lines changed

4 files changed

+1145
-0
lines changed

docs/README.md

Lines changed: 55 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,55 @@
1+
# AWS Data Platform Documentation
2+
3+
Welcome to the comprehensive documentation for the AWS Data Platform template. This documentation covers architecture, deployment, operations, and customization of the platform.
4+
5+
## 📚 Documentation Structure
6+
7+
### Architecture
8+
- [System Architecture](architecture/system-architecture.md) - High-level platform architecture
9+
- [Data Flow](architecture/data-flow.md) - Data ingestion and processing flows
10+
- [Security Architecture](architecture/security.md) - Security model and best practices
11+
- [Networking](architecture/networking.md) - VPC and network design
12+
13+
### Deployment Guides
14+
- [Quick Start](guides/quick-start.md) - Get started in 15 minutes
15+
- [Production Deployment](guides/production-deployment.md) - Production deployment checklist
16+
- [Multi-Region Setup](guides/multi-region.md) - Deploy across multiple AWS regions
17+
- [Disaster Recovery](guides/disaster-recovery.md) - Backup and recovery procedures
18+
19+
### Component Guides
20+
- [Streaming Pipeline](guides/streaming-pipeline.md) - Kinesis and Lambda configuration
21+
- [Batch Processing](guides/batch-processing.md) - EMR and Spark job development
22+
- [Data Warehouse](guides/data-warehouse.md) - Redshift optimization
23+
- [Machine Learning](guides/machine-learning.md) - SageMaker pipeline setup
24+
- [Business Intelligence](guides/business-intelligence.md) - QuickSight dashboard creation
25+
26+
### Operations
27+
- [Monitoring](guides/monitoring.md) - CloudWatch dashboards and alerts
28+
- [Cost Optimization](guides/cost-optimization.md) - Reduce AWS costs
29+
- [Performance Tuning](guides/performance-tuning.md) - Optimize processing performance
30+
- [Troubleshooting](guides/troubleshooting.md) - Common issues and solutions
31+
32+
### API Reference
33+
- [Lambda Functions](api/lambda-functions.md) - Stream processor API documentation
34+
- [Data Models](api/data-models.md) - Schema definitions
35+
- [REST APIs](api/rest-apis.md) - API Gateway endpoints
36+
37+
## 🚀 Quick Links
38+
39+
- [Environment Configuration](.env.example) - Environment variables reference
40+
- [Infrastructure Code](../infrastructure/) - CDK stack implementations
41+
- [Source Code](../src/) - Application source code
42+
- [Scripts](../scripts/) - Deployment and utility scripts
43+
44+
## 💡 Getting Help
45+
46+
- **Issues**: [GitHub Issues](https://github.com/tysoncung/aws-data-platform/issues)
47+
- **Discussions**: [GitHub Discussions](https://github.com/tysoncung/aws-data-platform/discussions)
48+
- **Examples**: See the [examples](examples/) directory
49+
50+
## 📖 Additional Resources
51+
52+
- [AWS Best Practices](https://aws.amazon.com/architecture/well-architected/)
53+
- [AWS CDK Documentation](https://docs.aws.amazon.com/cdk/)
54+
- [Apache Spark Documentation](https://spark.apache.org/docs/latest/)
55+
- [Amazon Redshift Documentation](https://docs.aws.amazon.com/redshift/)
Lines changed: 214 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,214 @@
1+
# System Architecture
2+
3+
## Overview
4+
5+
The AWS Data Platform implements a modern, cloud-native architecture that combines real-time streaming, batch processing, and machine learning capabilities in a unified platform.
6+
7+
## Architecture Principles
8+
9+
### 1. Separation of Concerns
10+
- **Ingestion Layer**: Handles data intake from various sources
11+
- **Processing Layer**: Transforms and enriches data
12+
- **Storage Layer**: Persists data in appropriate formats
13+
- **Serving Layer**: Provides data to consumers
14+
- **Consumption Layer**: Enables analytics and ML workloads
15+
16+
### 2. Scalability
17+
- Horizontal scaling for all components
18+
- Auto-scaling based on workload
19+
- Elastic compute resources
20+
21+
### 3. Reliability
22+
- Multi-AZ deployments
23+
- Automated failover
24+
- Data replication and backups
25+
26+
### 4. Security
27+
- Encryption at rest and in transit
28+
- IAM role-based access control
29+
- VPC isolation and security groups
30+
- AWS Secrets Manager for credentials
31+
32+
## Component Architecture
33+
34+
### Real-Time Streaming Layer
35+
36+
```
37+
Data Sources → Kinesis Data Streams → Lambda Functions → DynamoDB/S3
38+
39+
Kinesis Analytics → Real-time Dashboards
40+
41+
Kinesis Firehose → S3 Data Lake
42+
```
43+
44+
**Components:**
45+
- **Kinesis Data Streams**: Ingests streaming data at scale
46+
- **Lambda Functions**: Serverless processing of stream records
47+
- **DynamoDB**: Low-latency storage for real-time data
48+
- **Kinesis Analytics**: SQL queries on streaming data
49+
50+
### Batch Processing Layer
51+
52+
```
53+
S3 Data Lake → EMR Cluster → Processed Data → Redshift
54+
55+
Glue ETL Jobs → Data Catalog
56+
57+
Athena Queries → Analytics
58+
```
59+
60+
**Components:**
61+
- **EMR**: Distributed processing with Spark/Hadoop
62+
- **Glue ETL**: Serverless data transformation
63+
- **Athena**: Interactive SQL queries on S3 data
64+
- **Redshift**: Data warehouse for analytics
65+
66+
### Machine Learning Layer
67+
68+
```
69+
Feature Store → SageMaker Training → Model Registry
70+
71+
Model Endpoints → Inference API
72+
73+
A/B Testing → Production
74+
```
75+
76+
**Components:**
77+
- **SageMaker**: End-to-end ML platform
78+
- **Feature Store**: Centralized feature management
79+
- **Model Registry**: Version control for ML models
80+
- **Endpoints**: Real-time and batch inference
81+
82+
## Data Flow Patterns
83+
84+
### 1. Lambda Architecture
85+
Combines batch and streaming processing:
86+
- **Speed Layer**: Real-time processing via Kinesis/Lambda
87+
- **Batch Layer**: Historical processing via EMR/Glue
88+
- **Serving Layer**: Unified view via Redshift/DynamoDB
89+
90+
### 2. Kappa Architecture
91+
Streaming-first approach:
92+
- All data flows through Kinesis
93+
- Reprocessing via stream replay
94+
- Simplified architecture with single processing path
95+
96+
### 3. Data Mesh
97+
Domain-oriented decentralization:
98+
- Domain-specific data products
99+
- Self-serve data platform
100+
- Federated governance
101+
102+
## Technology Stack
103+
104+
### Core Services
105+
| Component | Technology | Purpose |
106+
|-----------|------------|---------|
107+
| Streaming | Amazon Kinesis | Real-time data ingestion |
108+
| Compute | AWS Lambda, EMR | Data processing |
109+
| Storage | S3, DynamoDB, Redshift | Data persistence |
110+
| Analytics | Athena, QuickSight | Data analysis |
111+
| ML | SageMaker | Machine learning |
112+
| Orchestration | Step Functions, Airflow | Workflow management |
113+
| Monitoring | CloudWatch, X-Ray | Observability |
114+
115+
### Programming Languages
116+
- **Python**: Primary language for all components
117+
- **SQL**: Data transformations and queries
118+
- **Spark**: Large-scale data processing
119+
120+
### Data Formats
121+
- **Raw**: JSON, CSV, Parquet
122+
- **Processed**: Parquet, ORC
123+
- **Serving**: JSON, Avro
124+
125+
## Network Architecture
126+
127+
### VPC Design
128+
```
129+
VPC (10.0.0.0/16)
130+
├── Public Subnets (10.0.1.0/24, 10.0.2.0/24)
131+
│ └── NAT Gateways, Load Balancers
132+
├── Private Subnets (10.0.10.0/24, 10.0.11.0/24)
133+
│ └── EMR, Lambda, ECS Tasks
134+
└── Database Subnets (10.0.20.0/24, 10.0.21.0/24)
135+
└── Redshift, RDS, ElastiCache
136+
```
137+
138+
### Security Groups
139+
- **EMR-Master-SG**: Controls access to EMR master node
140+
- **EMR-Worker-SG**: Inter-node communication
141+
- **Redshift-SG**: Database access control
142+
- **Lambda-SG**: Outbound only for Lambda functions
143+
144+
## High Availability
145+
146+
### Multi-AZ Deployment
147+
- Redshift clusters span multiple AZs
148+
- DynamoDB global tables for cross-region replication
149+
- S3 cross-region replication for critical data
150+
151+
### Disaster Recovery
152+
- **RPO**: 1 hour for batch data, real-time for streaming
153+
- **RTO**: 2 hours for full platform recovery
154+
- Automated backups and snapshots
155+
- Infrastructure as code for rapid redeployment
156+
157+
## Performance Optimization
158+
159+
### Caching Strategy
160+
- **CloudFront**: CDN for static content
161+
- **ElastiCache**: Redis for application caching
162+
- **S3 Intelligent-Tiering**: Automatic storage optimization
163+
164+
### Data Partitioning
165+
- **S3**: Partitioned by year/month/day/hour
166+
- **Redshift**: Distribution and sort keys optimization
167+
- **DynamoDB**: Partition key design for even distribution
168+
169+
## Cost Optimization
170+
171+
### Resource Management
172+
- **Auto-scaling**: Scale based on actual usage
173+
- **Spot Instances**: For EMR worker nodes
174+
- **Reserved Instances**: For predictable workloads
175+
- **S3 Lifecycle Policies**: Archive old data to Glacier
176+
177+
### Monitoring
178+
- **Cost Explorer**: Track spending trends
179+
- **Budgets**: Alert on cost overruns
180+
- **Trusted Advisor**: Optimization recommendations
181+
182+
## Security Architecture
183+
184+
### Data Protection
185+
- **Encryption**: AES-256 for data at rest
186+
- **TLS 1.2+**: For data in transit
187+
- **KMS**: Key management service integration
188+
189+
### Access Control
190+
- **IAM Roles**: Service-specific permissions
191+
- **Lake Formation**: Fine-grained data access
192+
- **Secrets Manager**: Credential rotation
193+
194+
### Compliance
195+
- **CloudTrail**: Audit logging
196+
- **Config**: Compliance monitoring
197+
- **GuardDuty**: Threat detection
198+
199+
## Scalability Limits
200+
201+
### Streaming
202+
- Kinesis: 1MB/sec or 1000 records/sec per shard
203+
- Lambda: 1000 concurrent executions (soft limit)
204+
- DynamoDB: 40,000 RCU/WCU per table
205+
206+
### Batch Processing
207+
- EMR: 500 nodes per cluster
208+
- Glue: 100 DPU per job
209+
- Redshift: 128 nodes per cluster
210+
211+
### Storage
212+
- S3: Unlimited storage
213+
- Single object: 5TB maximum
214+
- DynamoDB item: 400KB maximum

0 commit comments

Comments
 (0)