Open
Description
I am trying to use deepdish to store/restore large datasets in the HDF5 format, but deepdish.io.save
crashes every time the dataset is larger than about 2GB.
For example, suppose we have a very large array:
t=bytearray(8*1000*1000*400)
when I try:
dd.io.save('testeDeepdishLimit',t)
I get the error:
---------------------------------------------------------------------------
OverflowError Traceback (most recent call last)
<ipython-input-3-26ecd71b151a> in <module>()
----> 1 dd.io.save('testeDeepdishLimit',t)
~/anaconda3/lib/python3.6/site-packages/deepdish/io/hdf5io.py in save(path, data, compression)
594 else:
595 _save_level(h5file, group, data, name='data',
--> 596 filters=filters, idtable=idtable)
597 # Mark this to automatically unpack when loaded
598 group._v_attrs[DEEPDISH_IO_UNPACK] = True
~/anaconda3/lib/python3.6/site-packages/deepdish/io/hdf5io.py in _save_level(handler, group, level, name, filters, idtable)
302
303 else:
--> 304 _save_pickled(handler, group, level, name=name)
305
306
~/anaconda3/lib/python3.6/site-packages/deepdish/io/hdf5io.py in _save_pickled(handler, group, level, name)
170 DeprecationWarning)
171 node = handler.create_vlarray(group, name, tables.ObjectAtom())
--> 172 node.append(level)
173
174
~/anaconda3/lib/python3.6/site-packages/tables/vlarray.py in append(self, sequence)
535 nparr = None
536
--> 537 self._append(nparr, nobjects)
538 self.nrows += 1
539
tables/hdf5extension.pyx in tables.hdf5extension.VLArray._append()
OverflowError: value too large to convert to int
Is there any workaround for this issue?
Metadata
Metadata
Assignees
Labels
No labels