Skip to content

Commit dc14fa3

Browse files
yforsterHaoyiZeng
andauthored
Post's problem (#4)
* Adds proof of Limit lemma 1 * Add lowsimple.v * delete dup comments * Ongoing Limit Lemma2 * Finshed proof outline * Proof mono_m * Proof monotonic of m * Done Limit Lemma * Try SS * Add F_ * typo * update * refactor * decidability of extension * dn of requirements * P is simple * refactor * adds detail * wall function * refactor * step-indexed Oracle * done Phi * final fact * fix error * final fact gen * state the lemma * LPO -> exists p, p is low simple * error * finish proof * PostsProblem * Delete theories/PostsProblem/.DS_Store * Rename Limit.v to limit_computability.v * Rename StepIndex.v to step_indexing.v * Rename low_wall.v to the_low_wall_function.v * Rename lowsimple.v to low_simple_predicates.v * Rename priority_method.v to the_priority_method.v * Rename the_low_wall_function.v to lowness.v * Rename simple_extension.v to simpleness.v * index * refactor to prove Post's problem from ~~ LPO * ¬¬(¬¬Σ⁰₁)-LEM suffices * fix proof * remove one double negation * generalise attend_at_most_once_bound * polish * fix lowness * refactoring * polisj * typo * using unicode * unicode * fixed code * updated * fix error --------- Co-authored-by: Haoyi <[email protected]> Co-authored-by: Zeng Haoyi <[email protected]>
1 parent 032991c commit dc14fa3

10 files changed

+3489
-7
lines changed
+399
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,399 @@
1+
From SyntheticComputability Require Import ArithmeticalHierarchySemantic PostsTheorem reductions SemiDec TuringJump OracleComputability Definitions partial Pigeonhole.
2+
3+
Require Import stdpp.list Vectors.VectorDef Arith.Compare_dec Lia.
4+
Import Vector.VectorNotations.
5+
6+
Local Notation vec := Vector.t.
7+
8+
9+
(* ########################################################################## *)
10+
(** * Limit Computability *)
11+
(* ########################################################################## *)
12+
13+
(** This file contains the definition of limit computable and proves the
14+
Limit Lemma, i.e., limit computable is equivalence to reduciable to halting
15+
problem.
16+
17+
Convention:
18+
19+
limit: limit computable
20+
semi_dec(_K): semi decidable (on K)
21+
turing_red_K: turing reduciable to halting problem
22+
char[_X]: extensionality of X
23+
24+
**)
25+
26+
(* Definition of limit ciomputable *)
27+
28+
Definition limit_computable {X} (P: X → Prop) :=
29+
∃ f: X → nat → bool, ∀ x,
30+
(P x ↔ ∃ N, ∀ n, n ≥ N → f x n = true) ∧
31+
(¬ P x ↔ ∃ N, ∀ n, n ≥ N → f x n = false).
32+
33+
Definition char_rel_limit_computable {X} (P: X → bool → Prop) :=
34+
∃ f: X → nat → bool, ∀ x y, P x y ↔ ∃ N, ∀ n, n ≥ N → f x n = y.
35+
36+
Definition char_rel_limit_computable' {X} (P: X → bool → Prop) :=
37+
∃ f: X → nat → bool, ∀ x y, P x y → ∃ N, ∀ n, n ≥ N → f x n = y.
38+
39+
Lemma char_rel_limit_equiv {X} (P: X → Prop):
40+
char_rel_limit_computable (char_rel P) ↔ limit_computable P.
41+
Proof.
42+
split; intros [f Hf]; exists f; intros x.
43+
- split; firstorder.
44+
- intros []; destruct (Hf x) as [h1 h2]; eauto.
45+
Qed.
46+
47+
Lemma char_rel_limit_equiv' {X} (P: X → Prop):
48+
definite P → char_rel_limit_computable (char_rel P) ↔ char_rel_limit_computable' (char_rel P) .
49+
Proof.
50+
intros HP; split.
51+
- intros [f Hf]. exists f; intros.
52+
destruct (Hf x y) as [Hf' _].
53+
now apply Hf'.
54+
- intros [f Hf]. exists f. intros x y.
55+
split. intro H. now apply Hf.
56+
intros [N HN]. destruct (HP x).
57+
destruct y; [easy|].
58+
destruct (Hf x true H) as [N' HfN].
59+
intros _. enough (true = false) by congruence.
60+
specialize (HN (max N N')).
61+
specialize (HfN (max N N')).
62+
rewrite <- HN, <- HfN; eauto; lia.
63+
destruct y; [|easy].
64+
destruct (Hf x false H) as [N' HfN].
65+
enough (true = false) by congruence.
66+
specialize (HN (max N N')).
67+
specialize (HfN (max N N')).
68+
rewrite <- HN, <- HfN; eauto; lia.
69+
Qed.
70+
71+
72+
(* Naming the halting problem as K *)
73+
Notation K := (­{0}^(1)).
74+
75+
76+
Section LimitLemma1.
77+
(* Limit computable predicate P is reduciable to K *)
78+
79+
Variable vec_to_nat : ∀ k, vec nat k → nat.
80+
Variable nat_to_vec : ∀ k, nat → vec nat k.
81+
Variable vec_nat_inv : ∀ k v, nat_to_vec k (vec_to_nat v) = v.
82+
Variable nat_vec_inv : ∀ k n, vec_to_nat (nat_to_vec k n) = n.
83+
84+
Variable list_vec_to_nat : ∀ k, list (vec nat k) → nat.
85+
Variable nat_to_list_vec : ∀ k, nat → list (vec nat k).
86+
Variable list_vec_nat_inv : ∀ k v, nat_to_list_vec k (list_vec_to_nat v) = v.
87+
Variable nat_list_vec_inv : ∀ k n, list_vec_to_nat (nat_to_list_vec k n) = n.
88+
89+
Variable nat_to_list_bool : nat → list bool.
90+
Variable list_bool_to_nat : list bool → nat.
91+
Variable list_bool_nat_inv : ∀ l, nat_to_list_bool (list_bool_to_nat l) = l.
92+
Variable nat_list_bool_inv : ∀ n, list_bool_to_nat (nat_to_list_bool n) = n.
93+
94+
95+
Section def_K.
96+
97+
Hypothesis LEM_Σ_1: LEM_Σ 1.
98+
99+
Lemma semi_dec_def {X} (p: X → Prop):
100+
semi_decidable p → definite p.
101+
Proof.
102+
intros [f Hf]. unfold semi_decider in Hf.
103+
destruct level1 as (_&H2&_).
104+
assert principles.LPO as H by now rewrite <- H2.
105+
intro x. destruct (H (f x)).
106+
left. now rewrite Hf.
107+
right. intros [k Hk]%Hf.
108+
apply H0. now exists k.
109+
Qed.
110+
111+
Lemma def_K: definite K.
112+
Proof.
113+
apply semi_dec_def.
114+
assert (isΣsem 1 (@jumpNK _ 1 1)).
115+
eapply jump_in_Σn; eauto.
116+
assert (@jumpNK _ 1 1 ≡ₘ ­{0}^(1)).
117+
apply jumpNKspec.
118+
rewrite <- semi_dec_iff_Σ1 in H.
119+
destruct H0 as [_ [f Hf]].
120+
unfold reduces_m in Hf.
121+
destruct H as [g Hg].
122+
unfold semi_decider in Hg.
123+
exists (fun x => g (f x)).
124+
split. now intros H%Hf%Hg. now intros H%Hg%Hf.
125+
Qed.
126+
127+
End def_K.
128+
129+
(* Extensionality of Σ2, i.e. P t iff ∃ x. ∀ y. f(x, y, t) = true *)
130+
131+
Lemma char_Σ2 {k: nat} (P: vec nat k → Prop) :
132+
(∃ f: nat → nat → vec nat k → bool, ∀ x, P x ↔ (∃ n, ∀ m, f n m x = true)) →
133+
isΣsem 2 P.
134+
Proof.
135+
intros [f H].
136+
eapply isΣsemS_ with (p := fun v => ∀ y, f (hd v) y (tl v) = true).
137+
eapply isΠsemS_ with (p := fun v => f (hd (tl v)) (hd v) (tl (tl v)) = true).
138+
eapply isΣsem0. all: easy.
139+
Qed.
140+
141+
Lemma limit_Σ2 {k: nat} (P: vec nat k → Prop) :
142+
limit_computable P → isΣsem 2 P ∧ isΣsem 2 (compl P).
143+
Proof.
144+
intros [f H]; split; eapply char_Σ2.
145+
- exists (fun N n x => if lt_dec n N then true else f x n).
146+
intro w. destruct (H w) as [-> _]; split; intros [N Hn]; exists N.
147+
+ intro m. destruct (lt_dec m N); try apply Hn; lia.
148+
+ intros n He. specialize (Hn n); destruct (lt_dec n N); auto; lia.
149+
- exists (fun N n x => if lt_dec n N then true else negb (f x n)).
150+
intro w. destruct (H w) as [_ ->]; split; intros [N Hn]; exists N.
151+
+ intro m. destruct (lt_dec m N); [auto| rewrite (Hn m); lia].
152+
+ intros n He. specialize (Hn n).
153+
destruct (lt_dec n N); auto; [lia|destruct (f w n); easy].
154+
Qed.
155+
156+
Lemma limit_semi_dec_K {k: nat} (P: vec nat k → Prop) :
157+
LEM_Σ 1 →
158+
limit_computable P →
159+
OracleSemiDecidable K P ∧
160+
OracleSemiDecidable K (compl P).
161+
Proof.
162+
intros LEM H%limit_Σ2.
163+
rewrite <- !(Σ_semi_decidable_jump).
164+
all: eauto.
165+
Qed.
166+
167+
Lemma limit_turing_red_K' {k: nat} (P: vec nat k → Prop) :
168+
LEM_Σ 1 →
169+
definite K →
170+
limit_computable P →
171+
P ⪯ᴛ K.
172+
Proof.
173+
intros LEM D H % (limit_semi_dec_K LEM); destruct H as [h1 h2].
174+
apply PT; try assumption.
175+
apply Dec.nat_eq_dec.
176+
Qed.
177+
178+
Fact elim_vec (P: nat → Prop):
179+
P ⪯ₘ (fun x: vec nat 1 => P (hd x)) .
180+
Proof. exists (fun x => [x]). now intros x. Qed.
181+
182+
(** ** The Limit Lemma 1 *)
183+
184+
Lemma limit_turing_red_K {k: nat} (P: nat → Prop) :
185+
LEM_Σ 1 →
186+
limit_computable P →
187+
P ⪯ᴛ K.
188+
Proof.
189+
intros Hc [h Hh].
190+
specialize (def_K Hc) as Hk.
191+
eapply Turing_transitive; last eapply (@limit_turing_red_K' 1); eauto.
192+
eapply red_m_impl_red_T. apply elim_vec.
193+
exists (fun v n => h (hd v) n).
194+
intros x; split;
195+
destruct (Hh (hd x)) as [Hh1 Hh2]; eauto.
196+
Qed.
197+
198+
End LimitLemma1.
199+
200+
Section Σ1Approximation.
201+
202+
(* Turing jump of a trivial decidable problem is semi decidable *)
203+
204+
Lemma semi_dec_halting : semi_decidable K.
205+
Proof.
206+
eapply OracleSemiDecidable_semi_decidable with (q := ­{0}).
207+
- exists (λ n, match n with | O => true | _ => false end); intros [|n]; easy.
208+
- eapply semidecidable_J.
209+
Qed.
210+
211+
212+
(* Stabilizing the semi decider allows the semi decider
213+
to be used as a Σ1 approximation *)
214+
215+
Definition stable (f: nat → bool) := ∀ n m, n ≤ m → f n = true → f m = true.
216+
217+
Fixpoint stabilize_step {X} (f: X → nat → bool) x n :=
218+
match n with
219+
| O => false
220+
| S n => if f x n then true else stabilize_step f x n
221+
end.
222+
223+
Lemma stabilize {X} (P: X → Prop) :
224+
semi_decidable P → ∃ f, semi_decider f P ∧ ∀ x, stable (f x).
225+
Proof.
226+
intros [f Hf].
227+
exists (fun x n => stabilize_step f x n); split.
228+
- intro x; split; intro h.
229+
rewrite (Hf x) in h.
230+
destruct h as [c Hc].
231+
now exists (S c); cbn; rewrite Hc.
232+
rewrite (Hf x).
233+
destruct h as [c Hc].
234+
induction c; cbn in Hc; [congruence|].
235+
destruct (f x c) eqn: E; [now exists c|now apply IHc].
236+
- intros x n m Lenm Hn.
237+
induction Lenm; [trivial|].
238+
cbn; destruct (f x m) eqn: E; [trivial|assumption].
239+
Qed.
240+
241+
(* The Σ1 approximation output correct answers for arbitray list of questions *)
242+
Definition approximation_list {A} (P: A → Prop) (f: A → bool) L :=
243+
∀ i, List.In i L → P i ↔ f i = true.
244+
245+
Definition approximation_Σ1 {A} (P: A → Prop) :=
246+
∃ P_ : nat → A → bool,
247+
∀ L, ∃ c, ∀ c', c' ≥ c → approximation_list P (P_ c') L.
248+
249+
Definition approximation_Σ1_strong {A} (P: A → Prop) :=
250+
∃ P_ : nat → A → bool,
251+
(∀ L, ∃ c, ∀ c', c' ≥ c → approximation_list P (P_ c') L) ∧
252+
(∀ tau q a, @interrogation _ _ _ bool tau (char_rel P) q a → ∃ n, ∀ m, m ≥ n → interrogation tau (fun q a => P_ m q = a) q a).
253+
254+
Definition approximation_Σ1_weak {A} (P: A → Prop) :=
255+
∃ P_ : nat → A → bool,
256+
(∀ tau q a, @interrogation _ _ _ bool tau (char_rel P) q a → ∃ n, ∀ m, m ≥ n → interrogation tau (λ q a, P_ m q = a) q a).
257+
258+
Lemma semi_dec_approximation_Σ1 {X} (P: X → Prop) :
259+
definite P →
260+
semi_decidable P → approximation_Σ1 P.
261+
Proof.
262+
intros defP semiP; unfold approximation_Σ1, approximation_list.
263+
destruct (stabilize semiP) as [h [Hh HS]].
264+
exists (fun n x => h x n). intro l. induction l as [|a l [c Hc]].
265+
- exists 42; eauto.
266+
- destruct (defP a) as [h1| h2].
267+
+ destruct (Hh a) as [H _].
268+
destruct (H h1) as [N HN].
269+
exists (max c N); intros c' Hc' e [->| He].
270+
split; [intros _|easy].
271+
eapply HS; [|eapply HN]; lia.
272+
rewrite <- (Hc c'); [trivial|lia | assumption].
273+
+ exists c; intros c' Hc' e [->| He].
274+
split; [easy| intros h'].
275+
unfold semi_decider in Hh.
276+
now rewrite Hh; exists c'.
277+
rewrite Hc; eauto.
278+
Qed.
279+
280+
Lemma semi_dec_approximation_Σ1_strong {X} (P: X → Prop) :
281+
definite P →
282+
semi_decidable P → approximation_Σ1_strong P.
283+
Proof.
284+
intros defP semiP.
285+
destruct (semi_dec_approximation_Σ1 defP semiP) as [P_ HP_].
286+
exists P_; split; [apply HP_|].
287+
intros tau q ans Htau.
288+
destruct (HP_ q) as [w Hw].
289+
exists w. intros m Hm. rewrite interrogation_ext.
290+
exact Htau. eauto.
291+
intros q_ a H1.
292+
specialize (Hw m Hm q_ H1).
293+
unfold char_rel; cbn.
294+
destruct a; eauto; split; intro h2.
295+
intro h. rewrite Hw in h. congruence.
296+
firstorder.
297+
Qed.
298+
299+
Lemma approximation_Σ1_halting : definite K → approximation_Σ1 K.
300+
Proof. now intros H; apply semi_dec_approximation_Σ1, semi_dec_halting. Qed.
301+
302+
Lemma approximation_Σ1_halting_strong: definite K → approximation_Σ1_strong K.
303+
Proof. now intros H; apply semi_dec_approximation_Σ1_strong, semi_dec_halting. Qed.
304+
305+
306+
End Σ1Approximation.
307+
308+
309+
Section LimitLemma2.
310+
311+
(* A predicate P is reduciable to K if P is limit computable *)
312+
313+
Section Construction.
314+
315+
Variable f : nat → nat → bool.
316+
Variable tau : nat → tree nat bool bool.
317+
Hypothesis Hf: ∀ L, ∃ c, ∀ c', c' ≥ c → approximation_list K (f c') L.
318+
319+
Definition K_ n := fun i o => f n i = o.
320+
Definition char_K_ n := fun i => ret (f n i).
321+
322+
Lemma dec_K_ n : decidable (λ i, f n i = true).
323+
Proof.
324+
exists (f n). easy.
325+
Qed.
326+
327+
Lemma pcomputes_K_ n: pcomputes (char_K_ n) (λ i o, f n i = o).
328+
Proof.
329+
intros i o; split; intro H.
330+
now apply ret_hasvalue_inv.
331+
now apply ret_hasvalue'.
332+
Qed.
333+
334+
End Construction.
335+
336+
(** ** The Limit Lemma 2 *)
337+
338+
Theorem turing_red_K_lim (P: nat → Prop) :
339+
P ⪯ᴛ K →
340+
definite K →
341+
definite P →
342+
limit_computable P.
343+
Proof.
344+
intros [F [H HF]] defK defP.
345+
rewrite <- char_rel_limit_equiv.
346+
destruct (approximation_Σ1_halting_strong defK) as [k_ [_ Hk_2]].
347+
destruct H as [tau Htau].
348+
pose (char_K_ n := char_K_ k_ n).
349+
pose (K_ n := K_ k_ n).
350+
pose (Phi x n := evalt_comp (tau x) (k_ n) n n).
351+
assert (∀ x y, char_rel P x y → ∃ N : nat, ∀ n : nat, n ≥ N → (evalt_comp (tau x) (k_ n)) n n = Some (inr y)) as HL.
352+
{
353+
intros x y H.
354+
rewrite HF in H.
355+
rewrite Htau in H.
356+
destruct H as (qs & ans & Hint & Out).
357+
specialize (Hk_2 (tau x) qs ans Hint).
358+
destruct Hk_2 as [nth Hnth].
359+
assert (interrogation (tau x)
360+
(fun (q : nat) (a : bool) => (k_ nth) q = a) qs ans) as Hnthbase.
361+
eapply Hnth. lia.
362+
edestruct (interrogation_evalt_comp_limit (tau x) k_ qs ans y) as [L Hlimt].
363+
exists nth. intros. eapply Hnth. easy.
364+
eapply Out.
365+
exists L. intros. now apply Hlimt.
366+
}
367+
assert (∃ f, ∀ x y, char_rel P x y → ∃ N : nat, ∀ n : nat, n ≥ N → f x n = y) as [f HL'].
368+
{
369+
exists (λ x n, match (Phi x n) with
370+
| Some (inr y) => y | _ => false end).
371+
intros x y Hxy%HL.
372+
destruct (Hxy) as [N HN].
373+
exists N; intros.
374+
unfold Phi. rewrite HN; eauto.
375+
}
376+
exists f. intros x y; split.
377+
- now intros; apply HL'.
378+
- intro H0. destruct y; cbn.
379+
destruct (defP x); [easy|].
380+
assert (char_rel P x false); [easy|].
381+
apply HL' in H1.
382+
destruct H0 as [N1 HN1].
383+
destruct H1 as [N2 HN2].
384+
specialize (HN1 (S (max N1 N2))).
385+
specialize (HN2 (S (max N1 N2))).
386+
enough (true = false) by congruence.
387+
rewrite <- HN1, HN2; lia.
388+
destruct (defP x); [|easy].
389+
assert (char_rel P x true); [easy|].
390+
apply HL' in H1.
391+
destruct H0 as [N1 HN1].
392+
destruct H1 as [N2 HN2].
393+
specialize (HN1 (S (max N1 N2))).
394+
specialize (HN2 (S (max N1 N2))).
395+
enough (true = false) by congruence.
396+
rewrite <- HN2, HN1; lia.
397+
Qed.
398+
399+
End LimitLemma2.

0 commit comments

Comments
 (0)