|
| 1 | +From SyntheticComputability Require Import ArithmeticalHierarchySemantic PostsTheorem reductions SemiDec TuringJump OracleComputability Definitions partial Pigeonhole. |
| 2 | + |
| 3 | +Require Import stdpp.list Vectors.VectorDef Arith.Compare_dec Lia. |
| 4 | +Import Vector.VectorNotations. |
| 5 | + |
| 6 | +Local Notation vec := Vector.t. |
| 7 | + |
| 8 | + |
| 9 | +(* ########################################################################## *) |
| 10 | +(** * Limit Computability *) |
| 11 | +(* ########################################################################## *) |
| 12 | + |
| 13 | +(** This file contains the definition of limit computable and proves the |
| 14 | +Limit Lemma, i.e., limit computable is equivalence to reduciable to halting |
| 15 | +problem. |
| 16 | +
|
| 17 | +Convention: |
| 18 | +
|
| 19 | + limit: limit computable |
| 20 | + semi_dec(_K): semi decidable (on K) |
| 21 | + turing_red_K: turing reduciable to halting problem |
| 22 | + char[_X]: extensionality of X |
| 23 | +
|
| 24 | + **) |
| 25 | + |
| 26 | + (* Definition of limit ciomputable *) |
| 27 | + |
| 28 | + Definition limit_computable {X} (P: X → Prop) := |
| 29 | + ∃ f: X → nat → bool, ∀ x, |
| 30 | + (P x ↔ ∃ N, ∀ n, n ≥ N → f x n = true) ∧ |
| 31 | + (¬ P x ↔ ∃ N, ∀ n, n ≥ N → f x n = false). |
| 32 | + |
| 33 | + Definition char_rel_limit_computable {X} (P: X → bool → Prop) := |
| 34 | + ∃ f: X → nat → bool, ∀ x y, P x y ↔ ∃ N, ∀ n, n ≥ N → f x n = y. |
| 35 | + |
| 36 | + Definition char_rel_limit_computable' {X} (P: X → bool → Prop) := |
| 37 | + ∃ f: X → nat → bool, ∀ x y, P x y → ∃ N, ∀ n, n ≥ N → f x n = y. |
| 38 | + |
| 39 | + Lemma char_rel_limit_equiv {X} (P: X → Prop): |
| 40 | + char_rel_limit_computable (char_rel P) ↔ limit_computable P. |
| 41 | + Proof. |
| 42 | + split; intros [f Hf]; exists f; intros x. |
| 43 | + - split; firstorder. |
| 44 | + - intros []; destruct (Hf x) as [h1 h2]; eauto. |
| 45 | + Qed. |
| 46 | + |
| 47 | + Lemma char_rel_limit_equiv' {X} (P: X → Prop): |
| 48 | + definite P → char_rel_limit_computable (char_rel P) ↔ char_rel_limit_computable' (char_rel P) . |
| 49 | + Proof. |
| 50 | + intros HP; split. |
| 51 | + - intros [f Hf]. exists f; intros. |
| 52 | + destruct (Hf x y) as [Hf' _]. |
| 53 | + now apply Hf'. |
| 54 | + - intros [f Hf]. exists f. intros x y. |
| 55 | + split. intro H. now apply Hf. |
| 56 | + intros [N HN]. destruct (HP x). |
| 57 | + destruct y; [easy|]. |
| 58 | + destruct (Hf x true H) as [N' HfN]. |
| 59 | + intros _. enough (true = false) by congruence. |
| 60 | + specialize (HN (max N N')). |
| 61 | + specialize (HfN (max N N')). |
| 62 | + rewrite <- HN, <- HfN; eauto; lia. |
| 63 | + destruct y; [|easy]. |
| 64 | + destruct (Hf x false H) as [N' HfN]. |
| 65 | + enough (true = false) by congruence. |
| 66 | + specialize (HN (max N N')). |
| 67 | + specialize (HfN (max N N')). |
| 68 | + rewrite <- HN, <- HfN; eauto; lia. |
| 69 | + Qed. |
| 70 | + |
| 71 | + |
| 72 | + (* Naming the halting problem as K *) |
| 73 | + Notation K := ({0}^(1)). |
| 74 | + |
| 75 | + |
| 76 | +Section LimitLemma1. |
| 77 | + (* Limit computable predicate P is reduciable to K *) |
| 78 | + |
| 79 | + Variable vec_to_nat : ∀ k, vec nat k → nat. |
| 80 | + Variable nat_to_vec : ∀ k, nat → vec nat k. |
| 81 | + Variable vec_nat_inv : ∀ k v, nat_to_vec k (vec_to_nat v) = v. |
| 82 | + Variable nat_vec_inv : ∀ k n, vec_to_nat (nat_to_vec k n) = n. |
| 83 | + |
| 84 | + Variable list_vec_to_nat : ∀ k, list (vec nat k) → nat. |
| 85 | + Variable nat_to_list_vec : ∀ k, nat → list (vec nat k). |
| 86 | + Variable list_vec_nat_inv : ∀ k v, nat_to_list_vec k (list_vec_to_nat v) = v. |
| 87 | + Variable nat_list_vec_inv : ∀ k n, list_vec_to_nat (nat_to_list_vec k n) = n. |
| 88 | + |
| 89 | + Variable nat_to_list_bool : nat → list bool. |
| 90 | + Variable list_bool_to_nat : list bool → nat. |
| 91 | + Variable list_bool_nat_inv : ∀ l, nat_to_list_bool (list_bool_to_nat l) = l. |
| 92 | + Variable nat_list_bool_inv : ∀ n, list_bool_to_nat (nat_to_list_bool n) = n. |
| 93 | + |
| 94 | + |
| 95 | + Section def_K. |
| 96 | + |
| 97 | + Hypothesis LEM_Σ_1: LEM_Σ 1. |
| 98 | + |
| 99 | + Lemma semi_dec_def {X} (p: X → Prop): |
| 100 | + semi_decidable p → definite p. |
| 101 | + Proof. |
| 102 | + intros [f Hf]. unfold semi_decider in Hf. |
| 103 | + destruct level1 as (_&H2&_). |
| 104 | + assert principles.LPO as H by now rewrite <- H2. |
| 105 | + intro x. destruct (H (f x)). |
| 106 | + left. now rewrite Hf. |
| 107 | + right. intros [k Hk]%Hf. |
| 108 | + apply H0. now exists k. |
| 109 | + Qed. |
| 110 | + |
| 111 | + Lemma def_K: definite K. |
| 112 | + Proof. |
| 113 | + apply semi_dec_def. |
| 114 | + assert (isΣsem 1 (@jumpNK _ 1 1)). |
| 115 | + eapply jump_in_Σn; eauto. |
| 116 | + assert (@jumpNK _ 1 1 ≡ₘ {0}^(1)). |
| 117 | + apply jumpNKspec. |
| 118 | + rewrite <- semi_dec_iff_Σ1 in H. |
| 119 | + destruct H0 as [_ [f Hf]]. |
| 120 | + unfold reduces_m in Hf. |
| 121 | + destruct H as [g Hg]. |
| 122 | + unfold semi_decider in Hg. |
| 123 | + exists (fun x => g (f x)). |
| 124 | + split. now intros H%Hf%Hg. now intros H%Hg%Hf. |
| 125 | + Qed. |
| 126 | + |
| 127 | + End def_K. |
| 128 | + |
| 129 | + (* Extensionality of Σ2, i.e. P t iff ∃ x. ∀ y. f(x, y, t) = true *) |
| 130 | + |
| 131 | + Lemma char_Σ2 {k: nat} (P: vec nat k → Prop) : |
| 132 | + (∃ f: nat → nat → vec nat k → bool, ∀ x, P x ↔ (∃ n, ∀ m, f n m x = true)) → |
| 133 | + isΣsem 2 P. |
| 134 | + Proof. |
| 135 | + intros [f H]. |
| 136 | + eapply isΣsemS_ with (p := fun v => ∀ y, f (hd v) y (tl v) = true). |
| 137 | + eapply isΠsemS_ with (p := fun v => f (hd (tl v)) (hd v) (tl (tl v)) = true). |
| 138 | + eapply isΣsem0. all: easy. |
| 139 | + Qed. |
| 140 | + |
| 141 | + Lemma limit_Σ2 {k: nat} (P: vec nat k → Prop) : |
| 142 | + limit_computable P → isΣsem 2 P ∧ isΣsem 2 (compl P). |
| 143 | + Proof. |
| 144 | + intros [f H]; split; eapply char_Σ2. |
| 145 | + - exists (fun N n x => if lt_dec n N then true else f x n). |
| 146 | + intro w. destruct (H w) as [-> _]; split; intros [N Hn]; exists N. |
| 147 | + + intro m. destruct (lt_dec m N); try apply Hn; lia. |
| 148 | + + intros n He. specialize (Hn n); destruct (lt_dec n N); auto; lia. |
| 149 | + - exists (fun N n x => if lt_dec n N then true else negb (f x n)). |
| 150 | + intro w. destruct (H w) as [_ ->]; split; intros [N Hn]; exists N. |
| 151 | + + intro m. destruct (lt_dec m N); [auto| rewrite (Hn m); lia]. |
| 152 | + + intros n He. specialize (Hn n). |
| 153 | + destruct (lt_dec n N); auto; [lia|destruct (f w n); easy]. |
| 154 | + Qed. |
| 155 | + |
| 156 | + Lemma limit_semi_dec_K {k: nat} (P: vec nat k → Prop) : |
| 157 | + LEM_Σ 1 → |
| 158 | + limit_computable P → |
| 159 | + OracleSemiDecidable K P ∧ |
| 160 | + OracleSemiDecidable K (compl P). |
| 161 | + Proof. |
| 162 | + intros LEM H%limit_Σ2. |
| 163 | + rewrite <- !(Σ_semi_decidable_jump). |
| 164 | + all: eauto. |
| 165 | + Qed. |
| 166 | + |
| 167 | + Lemma limit_turing_red_K' {k: nat} (P: vec nat k → Prop) : |
| 168 | + LEM_Σ 1 → |
| 169 | + definite K → |
| 170 | + limit_computable P → |
| 171 | + P ⪯ᴛ K. |
| 172 | + Proof. |
| 173 | + intros LEM D H % (limit_semi_dec_K LEM); destruct H as [h1 h2]. |
| 174 | + apply PT; try assumption. |
| 175 | + apply Dec.nat_eq_dec. |
| 176 | + Qed. |
| 177 | + |
| 178 | + Fact elim_vec (P: nat → Prop): |
| 179 | + P ⪯ₘ (fun x: vec nat 1 => P (hd x)) . |
| 180 | + Proof. exists (fun x => [x]). now intros x. Qed. |
| 181 | + |
| 182 | + (** ** The Limit Lemma 1 *) |
| 183 | + |
| 184 | + Lemma limit_turing_red_K {k: nat} (P: nat → Prop) : |
| 185 | + LEM_Σ 1 → |
| 186 | + limit_computable P → |
| 187 | + P ⪯ᴛ K. |
| 188 | + Proof. |
| 189 | + intros Hc [h Hh]. |
| 190 | + specialize (def_K Hc) as Hk. |
| 191 | + eapply Turing_transitive; last eapply (@limit_turing_red_K' 1); eauto. |
| 192 | + eapply red_m_impl_red_T. apply elim_vec. |
| 193 | + exists (fun v n => h (hd v) n). |
| 194 | + intros x; split; |
| 195 | + destruct (Hh (hd x)) as [Hh1 Hh2]; eauto. |
| 196 | + Qed. |
| 197 | + |
| 198 | +End LimitLemma1. |
| 199 | + |
| 200 | +Section Σ1Approximation. |
| 201 | + |
| 202 | + (* Turing jump of a trivial decidable problem is semi decidable *) |
| 203 | + |
| 204 | + Lemma semi_dec_halting : semi_decidable K. |
| 205 | + Proof. |
| 206 | + eapply OracleSemiDecidable_semi_decidable with (q := {0}). |
| 207 | + - exists (λ n, match n with | O => true | _ => false end); intros [|n]; easy. |
| 208 | + - eapply semidecidable_J. |
| 209 | + Qed. |
| 210 | + |
| 211 | + |
| 212 | + (* Stabilizing the semi decider allows the semi decider |
| 213 | + to be used as a Σ1 approximation *) |
| 214 | + |
| 215 | + Definition stable (f: nat → bool) := ∀ n m, n ≤ m → f n = true → f m = true. |
| 216 | + |
| 217 | + Fixpoint stabilize_step {X} (f: X → nat → bool) x n := |
| 218 | + match n with |
| 219 | + | O => false |
| 220 | + | S n => if f x n then true else stabilize_step f x n |
| 221 | + end. |
| 222 | + |
| 223 | + Lemma stabilize {X} (P: X → Prop) : |
| 224 | + semi_decidable P → ∃ f, semi_decider f P ∧ ∀ x, stable (f x). |
| 225 | + Proof. |
| 226 | + intros [f Hf]. |
| 227 | + exists (fun x n => stabilize_step f x n); split. |
| 228 | + - intro x; split; intro h. |
| 229 | + rewrite (Hf x) in h. |
| 230 | + destruct h as [c Hc]. |
| 231 | + now exists (S c); cbn; rewrite Hc. |
| 232 | + rewrite (Hf x). |
| 233 | + destruct h as [c Hc]. |
| 234 | + induction c; cbn in Hc; [congruence|]. |
| 235 | + destruct (f x c) eqn: E; [now exists c|now apply IHc]. |
| 236 | + - intros x n m Lenm Hn. |
| 237 | + induction Lenm; [trivial|]. |
| 238 | + cbn; destruct (f x m) eqn: E; [trivial|assumption]. |
| 239 | + Qed. |
| 240 | + |
| 241 | + (* The Σ1 approximation output correct answers for arbitray list of questions *) |
| 242 | + Definition approximation_list {A} (P: A → Prop) (f: A → bool) L := |
| 243 | + ∀ i, List.In i L → P i ↔ f i = true. |
| 244 | + |
| 245 | + Definition approximation_Σ1 {A} (P: A → Prop) := |
| 246 | + ∃ P_ : nat → A → bool, |
| 247 | + ∀ L, ∃ c, ∀ c', c' ≥ c → approximation_list P (P_ c') L. |
| 248 | + |
| 249 | + Definition approximation_Σ1_strong {A} (P: A → Prop) := |
| 250 | + ∃ P_ : nat → A → bool, |
| 251 | + (∀ L, ∃ c, ∀ c', c' ≥ c → approximation_list P (P_ c') L) ∧ |
| 252 | + (∀ tau q a, @interrogation _ _ _ bool tau (char_rel P) q a → ∃ n, ∀ m, m ≥ n → interrogation tau (fun q a => P_ m q = a) q a). |
| 253 | + |
| 254 | + Definition approximation_Σ1_weak {A} (P: A → Prop) := |
| 255 | + ∃ P_ : nat → A → bool, |
| 256 | + (∀ tau q a, @interrogation _ _ _ bool tau (char_rel P) q a → ∃ n, ∀ m, m ≥ n → interrogation tau (λ q a, P_ m q = a) q a). |
| 257 | + |
| 258 | + Lemma semi_dec_approximation_Σ1 {X} (P: X → Prop) : |
| 259 | + definite P → |
| 260 | + semi_decidable P → approximation_Σ1 P. |
| 261 | + Proof. |
| 262 | + intros defP semiP; unfold approximation_Σ1, approximation_list. |
| 263 | + destruct (stabilize semiP) as [h [Hh HS]]. |
| 264 | + exists (fun n x => h x n). intro l. induction l as [|a l [c Hc]]. |
| 265 | + - exists 42; eauto. |
| 266 | + - destruct (defP a) as [h1| h2]. |
| 267 | + + destruct (Hh a) as [H _]. |
| 268 | + destruct (H h1) as [N HN]. |
| 269 | + exists (max c N); intros c' Hc' e [->| He]. |
| 270 | + split; [intros _|easy]. |
| 271 | + eapply HS; [|eapply HN]; lia. |
| 272 | + rewrite <- (Hc c'); [trivial|lia | assumption]. |
| 273 | + + exists c; intros c' Hc' e [->| He]. |
| 274 | + split; [easy| intros h']. |
| 275 | + unfold semi_decider in Hh. |
| 276 | + now rewrite Hh; exists c'. |
| 277 | + rewrite Hc; eauto. |
| 278 | + Qed. |
| 279 | + |
| 280 | + Lemma semi_dec_approximation_Σ1_strong {X} (P: X → Prop) : |
| 281 | + definite P → |
| 282 | + semi_decidable P → approximation_Σ1_strong P. |
| 283 | + Proof. |
| 284 | + intros defP semiP. |
| 285 | + destruct (semi_dec_approximation_Σ1 defP semiP) as [P_ HP_]. |
| 286 | + exists P_; split; [apply HP_|]. |
| 287 | + intros tau q ans Htau. |
| 288 | + destruct (HP_ q) as [w Hw]. |
| 289 | + exists w. intros m Hm. rewrite interrogation_ext. |
| 290 | + exact Htau. eauto. |
| 291 | + intros q_ a H1. |
| 292 | + specialize (Hw m Hm q_ H1). |
| 293 | + unfold char_rel; cbn. |
| 294 | + destruct a; eauto; split; intro h2. |
| 295 | + intro h. rewrite Hw in h. congruence. |
| 296 | + firstorder. |
| 297 | + Qed. |
| 298 | + |
| 299 | + Lemma approximation_Σ1_halting : definite K → approximation_Σ1 K. |
| 300 | + Proof. now intros H; apply semi_dec_approximation_Σ1, semi_dec_halting. Qed. |
| 301 | + |
| 302 | + Lemma approximation_Σ1_halting_strong: definite K → approximation_Σ1_strong K. |
| 303 | + Proof. now intros H; apply semi_dec_approximation_Σ1_strong, semi_dec_halting. Qed. |
| 304 | + |
| 305 | + |
| 306 | +End Σ1Approximation. |
| 307 | + |
| 308 | + |
| 309 | +Section LimitLemma2. |
| 310 | + |
| 311 | + (* A predicate P is reduciable to K if P is limit computable *) |
| 312 | + |
| 313 | + Section Construction. |
| 314 | + |
| 315 | + Variable f : nat → nat → bool. |
| 316 | + Variable tau : nat → tree nat bool bool. |
| 317 | + Hypothesis Hf: ∀ L, ∃ c, ∀ c', c' ≥ c → approximation_list K (f c') L. |
| 318 | + |
| 319 | + Definition K_ n := fun i o => f n i = o. |
| 320 | + Definition char_K_ n := fun i => ret (f n i). |
| 321 | + |
| 322 | + Lemma dec_K_ n : decidable (λ i, f n i = true). |
| 323 | + Proof. |
| 324 | + exists (f n). easy. |
| 325 | + Qed. |
| 326 | + |
| 327 | + Lemma pcomputes_K_ n: pcomputes (char_K_ n) (λ i o, f n i = o). |
| 328 | + Proof. |
| 329 | + intros i o; split; intro H. |
| 330 | + now apply ret_hasvalue_inv. |
| 331 | + now apply ret_hasvalue'. |
| 332 | + Qed. |
| 333 | + |
| 334 | + End Construction. |
| 335 | + |
| 336 | + (** ** The Limit Lemma 2 *) |
| 337 | + |
| 338 | + Theorem turing_red_K_lim (P: nat → Prop) : |
| 339 | + P ⪯ᴛ K → |
| 340 | + definite K → |
| 341 | + definite P → |
| 342 | + limit_computable P. |
| 343 | + Proof. |
| 344 | + intros [F [H HF]] defK defP. |
| 345 | + rewrite <- char_rel_limit_equiv. |
| 346 | + destruct (approximation_Σ1_halting_strong defK) as [k_ [_ Hk_2]]. |
| 347 | + destruct H as [tau Htau]. |
| 348 | + pose (char_K_ n := char_K_ k_ n). |
| 349 | + pose (K_ n := K_ k_ n). |
| 350 | + pose (Phi x n := evalt_comp (tau x) (k_ n) n n). |
| 351 | + assert (∀ x y, char_rel P x y → ∃ N : nat, ∀ n : nat, n ≥ N → (evalt_comp (tau x) (k_ n)) n n = Some (inr y)) as HL. |
| 352 | + { |
| 353 | + intros x y H. |
| 354 | + rewrite HF in H. |
| 355 | + rewrite Htau in H. |
| 356 | + destruct H as (qs & ans & Hint & Out). |
| 357 | + specialize (Hk_2 (tau x) qs ans Hint). |
| 358 | + destruct Hk_2 as [nth Hnth]. |
| 359 | + assert (interrogation (tau x) |
| 360 | + (fun (q : nat) (a : bool) => (k_ nth) q = a) qs ans) as Hnthbase. |
| 361 | + eapply Hnth. lia. |
| 362 | + edestruct (interrogation_evalt_comp_limit (tau x) k_ qs ans y) as [L Hlimt]. |
| 363 | + exists nth. intros. eapply Hnth. easy. |
| 364 | + eapply Out. |
| 365 | + exists L. intros. now apply Hlimt. |
| 366 | + } |
| 367 | + assert (∃ f, ∀ x y, char_rel P x y → ∃ N : nat, ∀ n : nat, n ≥ N → f x n = y) as [f HL']. |
| 368 | + { |
| 369 | + exists (λ x n, match (Phi x n) with |
| 370 | + | Some (inr y) => y | _ => false end). |
| 371 | + intros x y Hxy%HL. |
| 372 | + destruct (Hxy) as [N HN]. |
| 373 | + exists N; intros. |
| 374 | + unfold Phi. rewrite HN; eauto. |
| 375 | + } |
| 376 | + exists f. intros x y; split. |
| 377 | + - now intros; apply HL'. |
| 378 | + - intro H0. destruct y; cbn. |
| 379 | + destruct (defP x); [easy|]. |
| 380 | + assert (char_rel P x false); [easy|]. |
| 381 | + apply HL' in H1. |
| 382 | + destruct H0 as [N1 HN1]. |
| 383 | + destruct H1 as [N2 HN2]. |
| 384 | + specialize (HN1 (S (max N1 N2))). |
| 385 | + specialize (HN2 (S (max N1 N2))). |
| 386 | + enough (true = false) by congruence. |
| 387 | + rewrite <- HN1, HN2; lia. |
| 388 | + destruct (defP x); [|easy]. |
| 389 | + assert (char_rel P x true); [easy|]. |
| 390 | + apply HL' in H1. |
| 391 | + destruct H0 as [N1 HN1]. |
| 392 | + destruct H1 as [N2 HN2]. |
| 393 | + specialize (HN1 (S (max N1 N2))). |
| 394 | + specialize (HN2 (S (max N1 N2))). |
| 395 | + enough (true = false) by congruence. |
| 396 | + rewrite <- HN2, HN1; lia. |
| 397 | + Qed. |
| 398 | + |
| 399 | +End LimitLemma2. |
0 commit comments