Skip to content

Commit 243711f

Browse files
authored
Release 0.13.0 (#537)
* update CHANGELOG * Update dependencies * bump u8darts * Update README
1 parent 797b6de commit 243711f

File tree

5 files changed

+46
-6
lines changed

5 files changed

+46
-6
lines changed

CHANGELOG.md

+41-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,47 @@
44
Darts is still in an early development phase and we cannot always guarantee backwards compatibility. Changes that may **break code which uses a previous release of Darts** are marked with a "🔴".
55

66
## [Unreleased](https://github.com/unit8co/darts/tree/master)
7-
[Full Changelog](https://github.com/unit8co/darts/compare/0.12.0...master)
7+
[Full Changelog](https://github.com/unit8co/darts/compare/0.13.0...master)
8+
9+
## [0.13.0](https://github.com/unit8co/darts/tree/0.13.0) (2021-11-07)
10+
### For users of the library:
11+
12+
**Added**:
13+
- New forecasting model: [Temporal Fusion Transformer](https://arxiv.org/abs/1912.09363) (`TFTModel`).
14+
A new deep learning model supporting both past and future covariates.
15+
- Improved support for Facebook Prophet model (`Prophet`):
16+
- Added support for fit & predict with future covariates. For instance:
17+
`model.fit(train, future_covariates=train_covariates)` and
18+
`model.predict(n=len(test), num_sample=1, future_covariates=test_covariates)`
19+
- Added stochastic forecasting, for instance: `model.predict(n=len(test), num_samples=200)`
20+
- Added user-defined seasonalities either at model creation with kwarg
21+
`add_seasonality` (`Prophet(add_seasonality=kwargs_dict)`) or pre-fit with
22+
`model.add_seasonality(kwargs)`. For more information on how to add seasonalities,
23+
see the [Prophet docs](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.prophet.html).
24+
- Added possibility to predict and return the base model's raw output with `model.predict_raw()`.
25+
Note that this returns a pd.DataFrame `pred_df`, which will not be supported for further
26+
processing with the Darts API. But it is possible to access Prophet's methods such as
27+
plots with `model.model.plot_compenents(pred_df)`.
28+
- New `n_random_samples` in `gridsearch()` method, which allows to specify a number of (random)
29+
hyper parameters combinations to be tried, in order mainly to limit the gridsearch time.
30+
- Improvements in the checkpointing and saving of Torch models.
31+
- Now models don't save checkpoints by default anymore. Set `save_checkpoints=True` to enable them.
32+
- Models can be manually saved with `YourTorchModel.save_model(file_path)`
33+
(file_path pointing to the .pth.tar file).
34+
- Models can be manually loaded with `YourTorchModel.load_model(file_path)` or
35+
the original method `YourTorchModel.load_from_checkpoint()`.
36+
- New `QuantileRegression` Likelihood class in `darts.utils.likelihood_models`.
37+
Allows to apply quantile regression loss, and get probabilistic forecasts on all deep
38+
learning models supporting likelihoods.
39+
Used by default in the Temporal Fusion Transformer.
40+
41+
**Fixed:**
42+
- Some issues with `darts.concatenate()`.
43+
- Fixed some bugs with `RegressionModel`s applied on multivariate series.
44+
- An issue with the confidence bounds computation in ACF plot.
45+
- Added a check for some models that do not support `retrain=False` for `historical_forecasts()`.
46+
- Small fixes in install instructions.
47+
- Some rendering issues with bullet points lists in examples.
848

949
## [0.12.0](https://github.com/unit8co/darts/tree/0.12.0) (2021-09-25)
1050
### For users of the library:

README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -138,7 +138,7 @@ Model | Univariate | Multivariate | Probabilistic | Multiple-series training | P
138138
`NBEATSModel` | ✅ | ✅ | | ✅ | ✅ | | [N-BEATS paper](https://arxiv.org/abs/1905.10437)
139139
`TCNModel` | ✅ | ✅ | ✅ | ✅ | ✅ | | [TCN paper](https://arxiv.org/abs/1803.01271), [DeepTCN paper](https://arxiv.org/abs/1906.04397), [blog post](https://medium.com/unit8-machine-learning-publication/temporal-convolutional-networks-and-forecasting-5ce1b6e97ce4)
140140
`TransformerModel` | ✅ | ✅ | ✅ | ✅ | ✅ | |
141-
`TFTModel` | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | [TFT paper](https://arxiv.org/pdf/1912.09363.pdf), [PyTorch Forecasting](https://pytorch-forecasting.readthedocs.io/en/latest/models.html)
141+
`TFTModel` (Temporal Fusion Transformer) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | [TFT paper](https://arxiv.org/pdf/1912.09363.pdf), [PyTorch Forecasting](https://pytorch-forecasting.readthedocs.io/en/latest/models.html)
142142
Naive Baselines | ✅ | | | | | |
143143

144144

requirements/core.txt

+1-1
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@ pandas>=1.3.0
77
ipython>=7.22.0
88
tqdm>=4.60.0
99
holidays>=0.11.0
10-
scikit-learn>=0.24.0,<1.0.0
10+
scikit-learn>=1.0.1
1111
filterpy>=1.4.5
1212
joblib>=1.0.0
1313
requests>=2.25.0

requirements/torch.txt

+2-2
Original file line numberDiff line numberDiff line change
@@ -1,2 +1,2 @@
1-
torch>=1.8.0,<1.9.0
2-
tensorboard>=2.4.0
1+
torch>=1.8.0
2+
tensorboard>=2.4.0

setup_u8darts.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -29,7 +29,7 @@ def read_requirements(path):
2929

3030
setup(
3131
name='u8darts',
32-
version="0.12.0",
32+
version="0.13.0",
3333
description='A python library for easy manipulation and forecasting of time series.',
3434
long_description=LONG_DESCRIPTION,
3535
long_description_content_type="text/markdown",

0 commit comments

Comments
 (0)