Skip to content

Commit 8b9d0fd

Browse files
authored
Merge pull request #335 from unit8co/feature/fix-notebooks
fix datasets usage in notebooks
2 parents 4f53719 + 4c39e30 commit 8b9d0fd

8 files changed

+28
-28
lines changed

examples/01-darts-intro.ipynb

+2-2
Original file line numberDiff line numberDiff line change
@@ -107,7 +107,7 @@
107107
}
108108
],
109109
"source": [
110-
"series = AirPassengersDataset.load()\n",
110+
"series = AirPassengersDataset().load()\n",
111111
"series.plot()"
112112
]
113113
},
@@ -1134,7 +1134,7 @@
11341134
"name": "python",
11351135
"nbconvert_exporter": "python",
11361136
"pygments_lexer": "ipython3",
1137-
"version": "3.7.10"
1137+
"version": "3.8.5"
11381138
},
11391139
"pycharm": {
11401140
"stem_cell": {

examples/02-multi-time-series-and-covariates.ipynb

+3-3
Original file line numberDiff line numberDiff line change
@@ -65,8 +65,8 @@
6565
}
6666
],
6767
"source": [
68-
"series_air = AirPassengersDataset.load()\n",
69-
"series_milk = MonthlyMilkDataset.load()\n",
68+
"series_air = AirPassengersDataset().load()\n",
69+
"series_milk = MonthlyMilkDataset().load()\n",
7070
"\n",
7171
"series_air.plot(label='Number of air passengers')\n",
7272
"series_milk.plot(label='Pounds of milk produced per cow')\n",
@@ -757,7 +757,7 @@
757757
"name": "python",
758758
"nbconvert_exporter": "python",
759759
"pygments_lexer": "ipython3",
760-
"version": "3.6.13"
760+
"version": "3.8.5"
761761
}
762762
},
763763
"nbformat": 4,

examples/03-data-processing.ipynb

+7-7
Original file line numberDiff line numberDiff line change
@@ -126,7 +126,7 @@
126126
}
127127
],
128128
"source": [
129-
"series = MonthlyMilkDataset.load()\n",
129+
"series = MonthlyMilkDataset().load()\n",
130130
"\n",
131131
"print(series)\n",
132132
"series.plot()"
@@ -250,7 +250,7 @@
250250
}
251251
],
252252
"source": [
253-
"incomplete_series = MonthlyMilkIncompleteDataset.load()\n",
253+
"incomplete_series = MonthlyMilkIncompleteDataset().load()\n",
254254
"incomplete_series.plot()\n"
255255
]
256256
},
@@ -624,7 +624,7 @@
624624
"metadata": {},
625625
"outputs": [],
626626
"source": [
627-
"incomplete_series = MonthlyMilkIncompleteDataset.load()\n",
627+
"incomplete_series = MonthlyMilkIncompleteDataset().load()\n",
628628
"\n",
629629
"filler = MissingValuesFiller()\n",
630630
"scaler = Scaler()\n",
@@ -679,8 +679,8 @@
679679
}
680680
],
681681
"source": [
682-
"series = MonthlyMilkDataset.load()\n",
683-
"incomplete_series = MonthlyMilkIncompleteDataset.load()\n",
682+
"series = MonthlyMilkDataset().load()\n",
683+
"incomplete_series = MonthlyMilkIncompleteDataset().load()\n",
684684
"\n",
685685
"multiple_ts = [incomplete_series, series[:10]]\n",
686686
"\n",
@@ -764,7 +764,7 @@
764764
}
765765
],
766766
"source": [
767-
"series = MonthlyMilkIncompleteDataset.load()\n",
767+
"series = MonthlyMilkIncompleteDataset().load()\n",
768768
"\n",
769769
"huge_number_of_series = [series]*100000\n",
770770
"\n",
@@ -840,7 +840,7 @@
840840
"name": "python",
841841
"nbconvert_exporter": "python",
842842
"pygments_lexer": "ipython3",
843-
"version": "3.6.13"
843+
"version": "3.8.5"
844844
}
845845
},
846846
"nbformat": 4,

examples/04-FFT-examples.ipynb

+4-4
Original file line numberDiff line numberDiff line change
@@ -73,7 +73,7 @@
7373
"metadata": {},
7474
"outputs": [],
7575
"source": [
76-
"ts = TemperatureDataset.load()"
76+
"ts = TemperatureDataset().load()"
7777
]
7878
},
7979
{
@@ -417,7 +417,7 @@
417417
}
418418
],
419419
"source": [
420-
"ts_2 = AirPassengersDataset.load()\n",
420+
"ts_2 = AirPassengersDataset().load()\n",
421421
"train, val = ts_2.split_after(pd.Timestamp('19551201'))\n",
422422
"train.plot()\n",
423423
"val.plot()"
@@ -542,7 +542,7 @@
542542
}
543543
],
544544
"source": [
545-
"ts_3 = EnergyDataset.load()\n",
545+
"ts_3 = EnergyDataset().load()\n",
546546
"ts_3 = fill_missing_values(ts_3, 'auto')\n",
547547
"ts_3 = ts_3['generation nuclear']\n",
548548
"train, val = ts_3.split_after(pd.Timestamp('2017-07-01'))\n",
@@ -609,7 +609,7 @@
609609
"name": "python",
610610
"nbconvert_exporter": "python",
611611
"pygments_lexer": "ipython3",
612-
"version": "3.8.8"
612+
"version": "3.8.5"
613613
}
614614
},
615615
"nbformat": 4,

examples/05-RNN-examples.ipynb

+3-3
Original file line numberDiff line numberDiff line change
@@ -78,7 +78,7 @@
7878
"outputs": [],
7979
"source": [
8080
"# Read data:\n",
81-
"series = AirPassengersDataset.load()\n",
81+
"series = AirPassengersDataset().load()\n",
8282
"\n",
8383
"# Create training and validation sets:\n",
8484
"train, val = series.split_after(pd.Timestamp('19590101'))\n",
@@ -476,7 +476,7 @@
476476
}
477477
],
478478
"source": [
479-
"series_sunspot = SunspotsDataset.load()\n",
479+
"series_sunspot = SunspotsDataset().load()\n",
480480
"\n",
481481
"series_sunspot.plot()\n",
482482
"check_seasonality(series_sunspot, max_lag=240)"
@@ -693,7 +693,7 @@
693693
"name": "python",
694694
"nbconvert_exporter": "python",
695695
"pygments_lexer": "ipython3",
696-
"version": "3.6.13"
696+
"version": "3.8.5"
697697
}
698698
},
699699
"nbformat": 4,

examples/06-TCN-examples.ipynb

+4-4
Original file line numberDiff line numberDiff line change
@@ -60,7 +60,7 @@
6060
"outputs": [],
6161
"source": [
6262
"# Read data:\n",
63-
"ts = AirPassengersDataset.load()\n",
63+
"ts = AirPassengersDataset().load()\n",
6464
"scaler = Scaler()\n",
6565
"ts = scaler.fit_transform(ts) # scale the whole time series not caring about train/val split...\n",
6666
"\n",
@@ -210,7 +210,7 @@
210210
"metadata": {},
211211
"outputs": [],
212212
"source": [
213-
"series_sunspot = SunspotsDataset.load()\n",
213+
"series_sunspot = SunspotsDataset().load()\n",
214214
"scaler = Scaler()\n",
215215
"series_sp_transformed = scaler.fit_transform(series_sunspot)\n",
216216
"\n",
@@ -350,7 +350,7 @@
350350
}
351351
],
352352
"source": [
353-
"df3 = EnergyDataset.load().pd_data_frame()\n",
353+
"df3 = EnergyDataset().load().pd_data_frame()\n",
354354
"df3_day_avg = df3.groupby(df3['time'].astype(str).str.split(\" \").str[0]).mean().reset_index()\n",
355355
"series_en = fill_missing_values(TimeSeries.from_dataframe(df3_day_avg, 'time', ['generation hydro run-of-river and poundage']), 'auto')\n",
356356
"\n",
@@ -495,7 +495,7 @@
495495
"name": "python",
496496
"nbconvert_exporter": "python",
497497
"pygments_lexer": "ipython3",
498-
"version": "3.6.13"
498+
"version": "3.8.5"
499499
}
500500
},
501501
"nbformat": 4,

examples/07-Transformer-examples.ipynb

+3-3
Original file line numberDiff line numberDiff line change
@@ -85,7 +85,7 @@
8585
"outputs": [],
8686
"source": [
8787
"# Read data:\n",
88-
"series = AirPassengersDataset.load()\n",
88+
"series = AirPassengersDataset().load()\n",
8989
"\n",
9090
"# Create training and validation sets:\n",
9191
"train, val = series.split_after(pd.Timestamp('19590101'))\n",
@@ -390,7 +390,7 @@
390390
}
391391
],
392392
"source": [
393-
"series_sunspot = SunspotsDataset.load()\n",
393+
"series_sunspot = SunspotsDataset().load()\n",
394394
"\n",
395395
"series_sunspot.plot()\n",
396396
"check_seasonality(series_sunspot, max_lag=240)\n",
@@ -607,7 +607,7 @@
607607
"name": "python",
608608
"nbconvert_exporter": "python",
609609
"pygments_lexer": "ipython3",
610-
"version": "3.6.13"
610+
"version": "3.8.5"
611611
}
612612
},
613613
"nbformat": 4,

examples/08-NBEATS-examples.ipynb

+2-2
Original file line numberDiff line numberDiff line change
@@ -95,7 +95,7 @@
9595
}
9696
],
9797
"source": [
98-
"df = EnergyDataset.load().pd_dataframe()\n",
98+
"df = EnergyDataset().load().pd_dataframe()\n",
9999
"df['generation hydro run-of-river and poundage'].plot()\n",
100100
"plt.title('Hourly generation hydro run-of-river and poundage');"
101101
]
@@ -458,7 +458,7 @@
458458
"name": "python",
459459
"nbconvert_exporter": "python",
460460
"pygments_lexer": "ipython3",
461-
"version": "3.8.8"
461+
"version": "3.8.5"
462462
}
463463
},
464464
"nbformat": 4,

0 commit comments

Comments
 (0)