-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_audioset_embedding.py
50 lines (35 loc) · 1.55 KB
/
extract_audioset_embedding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import os
import soundfile
import tensorflow as tf
import vggish_input
import vggish_params
import vggish_postprocess
import vggish_slim
slim = tf.contrib.slim
class Extractor:
def __init__(self, checkpoint_path='vggish_model.ckpt', pcm_params_path='vggish_pca_params.npz'):
checkpoint_path = os.path.join(checkpoint_path)
pcm_params_path = os.path.join(pcm_params_path)
# Load model
vggish_slim.define_vggish_slim(training=False)
self.sess = tf.Session()
self.sess.run(tf.global_variables_initializer())
vggish_slim.load_vggish_slim_checkpoint(self.sess, checkpoint_path)
self.features_tensor = self.sess.graph.get_tensor_by_name(vggish_params.INPUT_TENSOR_NAME)
self.embedding_tensor = self.sess.graph.get_tensor_by_name(vggish_params.OUTPUT_TENSOR_NAME)
self.pproc = vggish_postprocess.Postprocessor(pcm_params_path)
### Feature extraction.
def extract_audioset_embedding(self, audio_path):
"""Extract log mel spectrogram features.
"""
# Arguments & parameters
sample_rate = vggish_params.SAMPLE_RATE
# Read audio
(audio, fs) = soundfile.read(audio_path)
# Extract log mel feature
logmel = vggish_input.waveform_to_examples(audio, sample_rate)
# Extract embedding feature
[embedding_batch] = self.sess.run([self.embedding_tensor], feed_dict={self.features_tensor: logmel})
# PCA
postprocessed_batch = self.pproc.postprocess(embedding_batch)
return postprocessed_batch