forked from Hoernchen/Epiphany
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathEpiphanyLoadStoreOptimizer.cpp
730 lines (647 loc) · 27.1 KB
/
EpiphanyLoadStoreOptimizer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
//=- EpiphanyLoadStoreOptimizer.cpp - Epiphany load/store opt. pass -*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file contains a pass that performs load / store related peephole
/// optimizations. This pass should be run after register allocation.
///
/// Flow:
/// * Split MachineFunction (MF) into MachineBasicBlocks (MBB)
/// * For each MBB look through instructions trying to find the next pairable one (see isPairableLoadStoreInst)
/// * If found pairable instruction, check if it has any flags preventing pairing
/// * If no such flags found, try to find matching paired instruction
/// * Take a couple of next instructions, find instruction with the same opcode, and run a couple of checks
/// * Check alignment, reg base, check if reg is not modified
/// * For real regs, try to find super-reg
/// * For real regs, check order
/// * For reg-based (not frame-based) offsets check base alignment (frame SHOULD be 8-byte aligned)
/// * If all green, try to pair regs
/// * For virtual regs, create reg sequence. If frame-based - merge based on stack growth direction and move
/// frame object into fixed local stack area
/// * For virtual regs, just swap with the super-reg
///
//===----------------------------------------------------------------------===//
#include "EpiphanyLoadStoreOptimizer.h"
using namespace llvm;
#define DEBUG_TYPE "epiphany_ls_opt"
STATISTIC(NumPairCreated, "Number of load/store pair instructions generated");
// The LdStLimit limits how far we search for load/store pairs.
static cl::opt<unsigned> LdStLimit("epiphany-load-store-scan-limit", cl::init(20), cl::Hidden);
char EpiphanyLoadStoreOptimizer::ID = 0;
/// \brief Returns true if this instruction should be considered for pairing
///
/// \param MI Machine instruction to check
///
/// \return true if this instruction should be considered for pairing
static bool isPairableLoadStoreInst(MachineInstr &MI) {
unsigned inst[] = {
Epiphany::STRi32_r16,
Epiphany::STRi32_r32,
Epiphany::STRf32,
Epiphany::LDRi32_r16,
Epiphany::LDRi32_r32,
Epiphany::LDRf32
};
unsigned Opc = MI.getOpcode();
return std::find(std::begin(inst), std::end(inst), Opc) != std::end(inst);
}
static unsigned int getMemScale(unsigned Opc) {
switch (Opc) {
default:
llvm_unreachable("Opcode has unknown scale!");
case Epiphany::STRi8_r16:
case Epiphany::STRi8_r32:
case Epiphany::LDRi8_r16:
case Epiphany::LDRi8_r32:
return 1;
case Epiphany::STRi16_r16:
case Epiphany::STRi16_r32:
case Epiphany::LDRi16_r16:
case Epiphany::LDRi16_r32:
return 2;
case Epiphany::STRi32_r16:
case Epiphany::STRi32_r32:
case Epiphany::LDRi32_r16:
case Epiphany::LDRi32_r32:
case Epiphany::STRf32:
case Epiphany::LDRf32:
return 4;
case Epiphany::STRi64:
case Epiphany::LDRi64:
case Epiphany::STRf64:
case Epiphany::LDRf64:
return 8;
}
}
static unsigned int getMemScale(MachineInstr &MI) {
return getMemScale(MI.getOpcode());
}
/// Returns correct instruction alignment. For Epiphany it is equal to memory scale
static unsigned int getAlignment(MachineInstr &MI) {
return getMemScale(MI);
}
static unsigned int getAlignment(unsigned Opc) {
return getMemScale(Opc);
}
/// Return paired opcode for the provided one, e.g. STRi64_r32 for STRi32_r32
static unsigned getMatchingPairOpcode(unsigned Opc) {
switch (Opc) {
default:
llvm_unreachable("Opcode has no pairwise equivalent");
break;
case Epiphany::STRi8_r16:
return Epiphany::STRi16_r16;
case Epiphany::STRi8_r32:
return Epiphany::STRi16_r32;
case Epiphany::STRi16_r16:
return Epiphany::STRi32_r16;
case Epiphany::STRi16_r32:
return Epiphany::STRi32_r32;
case Epiphany::STRi32_r16:
case Epiphany::STRi32_r32:
return Epiphany::STRi64;
case Epiphany::LDRi8_r16:
return Epiphany::LDRi16_r16;
case Epiphany::LDRi8_r32:
return Epiphany::LDRi16_r32;
case Epiphany::LDRi16_r16:
return Epiphany::LDRi32_r16;
case Epiphany::LDRi16_r32:
return Epiphany::LDRi32_r32;
case Epiphany::LDRi32_r16:
case Epiphany::LDRi32_r32:
return Epiphany::LDRi64;
case Epiphany::STRf32:
return Epiphany::STRf64;
case Epiphany::LDRf32:
return Epiphany::LDRf64;
}
}
/// Convert the byte-offset used by unscaled into an "element" offset used
/// by the scaled pair load/store instructions.
static bool inBoundsForPair(int64_t Offset) {
// Well, in fact if the op is in bounds for any kind of store/load - it will be in bound for pairing
return true;
}
/// Get register for the store/load machine operand
static const MachineOperand &getRegOperand(const MachineInstr &MI) {
return MI.getOperand(0);
}
/// Get base for the store/load machine operand
static const MachineOperand &getBaseOperand(const MachineInstr &MI) {
return MI.getOperand(1);
}
/// Get offset for the store/load machine operand
static const MachineOperand &getOffsetOperand(const MachineInstr &MI) {
return MI.getOperand(2);
}
/// Returns true if we need to use offset, false if frame index should be used
static bool baseIsFrameIndex(const MachineInstr &FirstMI, const MachineInstr &SecondMI) {
return getBaseOperand(FirstMI).isFI() && getBaseOperand(SecondMI).isFI();
}
/// Returns true if FirstMI and MI are candidates for merging or pairing.
/// Otherwise, returns false.
static bool areCandidatesToMergeOrPair(MachineInstr &FirstMI, MachineInstr &SecondMI, LoadStoreFlags &Flags) {
// If this is volatile not a candidate.
if (SecondMI.hasOrderedMemoryRef())
return false;
// We should have already checked FirstMI for pair suppression and volatility.
assert(!FirstMI.hasOrderedMemoryRef() &&
"FirstMI shouldn't get here if either of these checks are true.");
unsigned OpcA = FirstMI.getOpcode();
unsigned OpcB = SecondMI.getOpcode();
// Opcodes match: nothing more to check.
if (OpcA != OpcB) {
return false;
}
return true;
}
/// trackRegDefsUses - Remember what registers the specified instruction uses
/// and modifies.
static void trackRegDefsUses(const MachineInstr &MI, BitVector &ModifiedRegs,
BitVector &UsedRegs, const TargetRegisterInfo *TRI) {
for (const MachineOperand &MO : MI.operands()) {
if (MO.isRegMask())
ModifiedRegs.setBitsNotInMask(MO.getRegMask());
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
if (!Reg)
continue;
if (MO.isDef()) {
// WZR/XZR are not modified even when used as a destination register.
if (!TRI->isVirtualRegister(Reg)) {
for (MCRegAliasIterator AI(Reg, TRI, /* includeSelf = */ true); AI.isValid(); ++AI) {
ModifiedRegs.set(*AI);
}
} else {
ModifiedRegs.set(TRI->virtReg2Index(Reg));
}
} else {
assert(MO.isUse() && "Reg operand not a def and not a use?!?");
if (!TRI->isVirtualRegister(Reg)) {
for (MCRegAliasIterator AI(Reg, TRI, /* includeSelf = */ true); AI.isValid(); ++AI) {
UsedRegs.set(*AI);
}
} else {
UsedRegs.set(TRI->virtReg2Index(Reg));
}
}
}
}
/// Keeps track on which frame indexes were used between two candidates to merge
static void trackFrameIdxs(const MachineInstr &MI, BitVector &ModifiedFrameIdxs, BitVector &UsedFrameIdxs) {
for (const MachineOperand &MO : MI.operands()) {
if (MO.isFI()) {
if (MI.mayStore()) {
ModifiedFrameIdxs.set(MO.getIndex());
} else {
UsedFrameIdxs.set(MO.getIndex());
}
}
}
}
/// \brief Returns true if the alignment for specified regs and their offsets is good for pairing.
/// Only applicable when the frame is finalized
///
/// \param FirstMI First instruction to check
/// \param SecondMI Second instruction to check
///
/// \return true if alignment is ok for pairing
bool EpiphanyLoadStoreOptimizer::isAlignmentCorrect(MachineInstr &FirstMI, MachineInstr &SecondMI) {
// Resolve target reg class
unsigned MainReg = getRegOperand(FirstMI).getReg();
unsigned PairedReg = getRegOperand(SecondMI).getReg();
int64_t MainOffset = getOffsetOperand(FirstMI).getImm() ;
int64_t PairedOffset = getOffsetOperand(SecondMI).getImm();
// Check that base alignment matches paired opcode alignment
int PairedAlignment = getAlignment(getMatchingPairOpcode(FirstMI.getOpcode()));
if (getBaseOperand(FirstMI).getReg() != Epiphany::FP) {
// Only applicable when we are dealing with non-FP-based offset, as frame is 8-byte aligned
MachineInstr::mmo_iterator FirstMMOI = FirstMI.memoperands_begin();
MachineMemOperand FirstMO = **FirstMMOI;
MachineInstr::mmo_iterator SecondMMOI = SecondMI.memoperands_begin();
MachineMemOperand SecondMO = **SecondMMOI;
if (FirstMO.getBaseAlignment() != PairedAlignment && SecondMO.getBaseAlignment() != PairedAlignment) {
DEBUG(dbgs() << "Base alignment out, skipping\n");
return false;
}
// Check if at least one instruction is aligned to the paired opcode alignment
if ((MainOffset % PairedAlignment != 0) && (PairedOffset % PairedAlignment) != 0) {
DEBUG(dbgs() << "Offsets alignment out, skipping\n");
return false;
}
}
// If regs are already defined - check alignment based on regs order
if (!TRI->isVirtualRegister(MainReg)) {
// Machine reg checks
// Offset stride -1 for FI as stack grows down
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(MainReg) == &Epiphany::GPR32RegClass ?
&Epiphany::GPR64RegClass : &Epiphany::FPR64RegClass;
// Determine which offset should be higher
unsigned sra = TRI->getMatchingSuperReg(MainReg, Epiphany::isub_lo, RC);
unsigned srb = TRI->getMatchingSuperReg(PairedReg, Epiphany::isub_hi, RC);
int64_t HighOffset = PairedOffset;
int64_t LowOffset = MainOffset;
if ((!sra || !srb) || (sra != srb)) {
sra = TRI->getMatchingSuperReg(PairedReg, Epiphany::isub_lo, RC);
srb = TRI->getMatchingSuperReg(MainReg, Epiphany::isub_hi, RC);
HighOffset = MainOffset;
LowOffset = PairedOffset;
}
// Can't form super reg
if (!(sra && srb) || (sra != srb)) {
return false;
}
// Low reg offset should be always lower than high reg offset, and it should be aligned to the paired opcode align
if (LowOffset >= HighOffset || (LowOffset % getAlignment(getMatchingPairOpcode(FirstMI.getOpcode())) != 0)) {
return false;
}
}
return true;
}
/// \brief Returns true if specified regs can form a super reg.
/// Only applicable for real machine registers, not vregs
///
/// \param MainReg First reg to check for pairing
/// \param PairedReg Second reg to check for pairing
///
/// \return true if regs can be paired
bool EpiphanyLoadStoreOptimizer::canFormSuperReg(unsigned MainReg, unsigned PairedReg) {
// Resolve target reg class
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(MainReg) == &Epiphany::GPR32RegClass ?
&Epiphany::GPR64RegClass : &Epiphany::FPR64RegClass;
unsigned sra = TRI->getMatchingSuperReg(MainReg, Epiphany::isub_lo, RC);
unsigned srb = TRI->getMatchingSuperReg(PairedReg, Epiphany::isub_hi, RC);
if ((!sra || !srb) || (sra != srb)) {
sra = TRI->getMatchingSuperReg(PairedReg, Epiphany::isub_lo, RC);
srb = TRI->getMatchingSuperReg(MainReg, Epiphany::isub_hi, RC);
}
return !(!(sra && srb) || (sra != srb));
}
/// Checks if two load/store instructions have similar base, and their
/// offsets differ by some fixed stride
static bool isBaseAndOffsetCorrect(unsigned MainBase, unsigned PairBase, int64_t MainOffset,
int64_t PairOffset, int OffsetStride) {
return (MainBase == PairBase &&
((MainOffset == PairOffset + OffsetStride) || (MainOffset + OffsetStride == PairOffset)));
}
/// Cleans register kill flags before merge
///
/// Can have two cases based on \p MergeForward value:
/// If merging backward
/// \code
/// STRi32 %r0, ...
/// USE %r1
/// STRi32 kill %r1 ; need to clear kill flag when moving STRi32 upwards
/// \endcode
///
/// If merging forward
/// \code
/// STRi32 %r1, ...
/// USE kill %r1 ; need to clear kill flag when moving STRi32 downwards
/// STRi32 %r0
/// \endcode
void EpiphanyLoadStoreOptimizer::cleanKillFlags(MachineOperand RegOp0, MachineOperand RegOp1,
MachineBasicBlock::iterator I, MachineBasicBlock::iterator Paired,
bool MergeForward) {
if (!MergeForward) {
// Clear kill flags on store if moving backward
RegOp0.setIsKill(false);
RegOp1.setIsKill(false);
} else {
// Clear kill flags on store if moving forward
unsigned Reg = getRegOperand(*I).getReg();
for (MachineInstr &MI : make_range(std::next(I), Paired))
MI.clearRegisterKills(Reg, TRI);
}
}
/// \brief Merge two real reg-based 32-bit load/store instructions into a single 64-bit one
///
/// \param PairedOp Wide store/load operation opcode
/// \param OffsetImm Offset to use
/// \param RegOp0 Reg operand from the first paired store/load
/// \param RegOp1 Reg operand from the second paired store/load
/// \param I Iterator pointing at the first paired store/load
/// \param Paired Iterator pointing at the second paired store/load
/// \param Flags Store/load flags
///
/// \return Builder result
MachineInstrBuilder EpiphanyLoadStoreOptimizer::mergeRegInsns(unsigned PairedOp, int64_t OffsetImm,
MachineOperand RegOp0, MachineOperand RegOp1,
MachineBasicBlock::iterator I,
MachineBasicBlock::iterator Paired,
const LoadStoreFlags &Flags) {
MachineInstrBuilder MIB;
bool MergeForward = Flags.getMergeForward();
// Insert our new paired instruction after whichever of the paired
// instructions MergeForward indicates.
MachineBasicBlock::iterator InsertionPoint = MergeForward ? Paired : I;
unsigned PairedReg = RegOp0.getReg();
const MachineOperand &PairedBase = getBaseOperand(*Paired);
const MachineOperand &MainBase = getBaseOperand(*I);
const MachineOperand &BaseRegOp = MergeForward ? PairedBase : MainBase;
DebugLoc DL = I->getDebugLoc();
MachineBasicBlock *MBB = I->getParent();
if (PairedOp == Epiphany::STRi64 || PairedOp == Epiphany::LDRi64) {
const TargetRegisterClass *RC = &Epiphany::GPR64RegClass;
unsigned sreg = TRI->getMatchingSuperReg(PairedReg, Epiphany::isub_hi, RC);
if (!sreg) {
sreg = TRI->getMatchingSuperReg(PairedReg, Epiphany::isub_lo, RC);
}
MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(PairedOp))
.addReg(sreg)
.addOperand(BaseRegOp)
.addImm(OffsetImm)
.setMemRefs(I->mergeMemRefsWith(*Paired));
} else {
// Standard 32-bit reg
MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(PairedOp))
.addOperand(RegOp0)
.addOperand(BaseRegOp)
.addImm(OffsetImm)
.setMemRefs(I->mergeMemRefsWith(*Paired));
}
DEBUG(dbgs() << "\t");
DEBUG(((MachineInstr *) MIB)->print(dbgs()));
return MIB;
}
/// Merges two n-bit load/store instructions into a single 2*n-bit one
MachineBasicBlock::iterator
EpiphanyLoadStoreOptimizer::mergePairedInsns(MachineBasicBlock::iterator I,
MachineBasicBlock::iterator Paired, const LoadStoreFlags &Flags) {
MachineBasicBlock::iterator NextI = I;
++NextI;
// If NextI is the second of the two instructions to be merged, we need
// to skip one further. Either way we merge will invalidate the iterator,
// and we don't need to scan the new instruction, as it's a pairwise
// instruction, which we're not considering for further action anyway.
if (NextI == Paired)
++NextI;
unsigned Opc = I->getOpcode();
bool MergeForward = Flags.getMergeForward();
// Also based on MergeForward is from where we copy the base register operand
// so we get the flags compatible with the input code.
const MachineOperand &BaseRegOp = MergeForward ? getBaseOperand(*Paired) : getBaseOperand(*I);
int64_t Offset = getOffsetOperand(*I).getImm();
int64_t PairedOffset = getOffsetOperand(*Paired).getImm();
// Offset stride is 1 frame index or 1 instruction memory size. Sign depends on stack growth direction
int OffsetStride = getMemScale(*I);
OffsetStride = StackGrowsDown ? OffsetStride : -OffsetStride;
// Which register is Rt and which is Rt2 depends on the offset order.
MachineInstr *RtMI, *Rt2MI;
if (Offset == PairedOffset + OffsetStride) {
RtMI = &*Paired;
Rt2MI = &*I;
} else {
RtMI = &*I;
Rt2MI = &*Paired;
}
int64_t OffsetImm = getOffsetOperand(*RtMI).getImm();
// Construct the new instruction.
DebugLoc DL = I->getDebugLoc();
MachineOperand RegOp0 = getRegOperand(*RtMI);
MachineOperand RegOp1 = getRegOperand(*Rt2MI);
// Kill flags may become invalid when moving stores for pairing.
if (RegOp0.isUse()) {
cleanKillFlags(RegOp0, RegOp1, I, Paired, MergeForward);
}
DEBUG(dbgs() << "Creating pair load/store. Replacing instructions:\n\t");
DEBUG(I->print(dbgs()));
DEBUG(dbgs() << "\t");
DEBUG(Paired->print(dbgs()));
DEBUG(dbgs() << " with instruction:\n");
unsigned PairedOp = getMatchingPairOpcode(Opc);
unsigned PairedReg = RegOp0.getReg();
mergeRegInsns(PairedOp, OffsetImm, RegOp0, RegOp1, I, Paired, Flags);
DEBUG(dbgs() << "\n");
// Erase the old instructions.
I->eraseFromParent();
Paired->eraseFromParent();
return NextI;
}
/// Scan the instructions looking for a load/store that can be combined with the
/// current instruction into a wider equivalent or a load/store pair.
MachineBasicBlock::iterator
EpiphanyLoadStoreOptimizer::findMatchingInst(MachineBasicBlock::iterator I,
LoadStoreFlags &Flags, unsigned Limit) {
MachineBasicBlock::iterator E = I->getParent()->end();
MachineBasicBlock::iterator MBBI = I;
MachineInstr &FirstMI = *I;
++MBBI;
bool MayLoad = FirstMI.mayLoad();
// Get first instruction reg data
unsigned Reg = getRegOperand(FirstMI).getReg();
unsigned RegIdx = Reg;
unsigned BaseReg = getBaseOperand(FirstMI).isReg() ? getBaseOperand(FirstMI).getReg() : Epiphany::FP;
unsigned BaseRegIdx = BaseReg;
// Track which registers have been modified and used between the first insn
// (inclusive) and the second insn.
ModifiedRegs.reset();
UsedRegs.reset();
// Remember any instructions that read/write memory between FirstMI and MI.
SmallVector<MachineInstr *, 4> MemInsns;
for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) {
MachineInstr &MI = *MBBI;
// Don't count transient instructions towards the search limit since there
// may be different numbers of them if e.g. debug information is present.
if (!MI.isTransient())
++Count;
if (areCandidatesToMergeOrPair(FirstMI, MI, Flags) &&
getOffsetOperand(MI).isImm()) {
assert(MI.mayLoadOrStore() && "Expected memory operation.");
// Get second instruction reg data
unsigned MIReg = getRegOperand(MI).getReg();
unsigned MIRegIdx = MIReg;
unsigned MIBaseReg = getBaseOperand(MI).isReg() ? getBaseOperand(MI).getReg() : Epiphany::FP;
// Get offsets
int64_t Offset = getOffsetOperand(FirstMI).getImm();
int64_t MIOffset = getOffsetOperand(MI).getImm();
// If we've found another instruction with the same opcode, check to see
// if regs, base and offset are compatible with our starting instruction.
// These instructions all have scaled immediate operands, so we just
// check for +1/-1. Make sure to check the new instruction offset is
// actually an immediate and not a symbolic reference destined for
// a relocation.
int OffsetStride = getMemScale(FirstMI);
if (isBaseAndOffsetCorrect(BaseReg, MIBaseReg, Offset, MIOffset, OffsetStride)) {
DEBUG(dbgs() << "Checking instruction "; MI.dump());
// First, check register parity
if (!canFormSuperReg(Reg, MIReg)) {
trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
MemInsns.push_back(&MI);
DEBUG(dbgs() << "Can't find matching superreg\n");
continue;
}
// Check if the alignment is correct
if (!isAlignmentCorrect(FirstMI, MI)) {
trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
MemInsns.push_back(&MI);
DEBUG(dbgs() << "Can't be paired due to alignment\n");
continue;
}
// Get the left-lowest offset
int64_t MinOffset = Offset < MIOffset ? Offset : MIOffset;
// If the resultant immediate offset of merging these
// instructions is out of range for
// a pairwise instruction, bail and keep looking.
if (!inBoundsForPair(MinOffset)) {
trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
MemInsns.push_back(&MI);
DEBUG(dbgs() << "Out of bound for pairing\n");
continue;
}
// If the destination register of the loads is the same register, bail
// and keep looking. A load-pair instruction with both destination
// registers the same is UNPREDICTABLE and will result in an exception.
if (MayLoad && Reg == getRegOperand(MI).getReg()) {
trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
MemInsns.push_back(&MI);
DEBUG(dbgs() << "Can't merge into same reg\n");
continue;
}
// If the Rt of the second instruction was not modified or used between
// the two instructions and none of the instructions between the second
// and first alias with the second, we can combine the second into the
// first.
if (!ModifiedRegs[MIRegIdx]) {
if (!(MI.mayLoad() && UsedRegs[MIRegIdx])) {
Flags.setMergeForward(false);
return MBBI;
}
} else {
DEBUG(dbgs() << "Proposed paired reg was modified, will try to merge forward\n");
}
// Likewise, if the Rt of the first instruction is not modified or used
// between the two instructions and none of the instructions between the
// first and the second alias with the first, we can combine the first
// into the second.
if (!ModifiedRegs[RegIdx] && !(MayLoad && UsedRegs[RegIdx])) {
Flags.setMergeForward(true);
return MBBI;
}
// Unable to combine these instructions due to interference in between.
// Keep looking.
}
}
// If the instruction wasn't a matching load or store. Stop searching if we
// encounter a call instruction that might modify memory.
if (MI.isCall())
return E;
// Update modified / uses register lists.
trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
// Otherwise, if the base register is modified, we have no match, so
// return early. Should only happen when dealing with real registers
if (ModifiedRegs[BaseRegIdx])
return E;
// Update list of instructions that read/write memory.
if (MI.mayLoadOrStore())
MemInsns.push_back(&MI);
}
return E;
}
// Find loads and stores that can be merged into a single load or store pair
// instruction.
bool EpiphanyLoadStoreOptimizer::tryToPairLoadStoreInst(MachineBasicBlock::iterator &MBBI) {
MachineInstr &MI = *MBBI;
MachineBasicBlock::iterator E = MI.getParent()->end();
DEBUG(dbgs() << "\nTrying to pair instruction: ";
MI.print(dbgs()););
if (!TII->isCandidateToMergeOrPair(MI)) {
DEBUG(dbgs() << "Not a candidate for merging\n");
return false;
}
// Early exit if the offset is not possible to match. (6 bits of positive
// range, plus allow an extra one in case we find a later insn that matches
// with Offset-1)
int64_t Offset = getOffsetOperand(MI).getImm();
int OffsetStride = 1;
// Allow one more for offset.
if (Offset > 0)
Offset -= OffsetStride;
if (!inBoundsForPair(Offset)) {
DEBUG(dbgs() << "Out of bounds for pairing\n");
return false;
}
// Look ahead up to LdStLimit instructions for a pairable instruction.
LoadStoreFlags Flags;
MachineBasicBlock::iterator Paired =
findMatchingInst(MBBI, Flags, LdStLimit);
if (Paired != E) {
++NumPairCreated;
// Keeping the iterator straight is a pain, so we let the merge routine tell
// us what the next instruction is after it's done mucking about.
MBBI = mergePairedInsns(MBBI, Paired, Flags);
return true;
} else {
DEBUG(dbgs() << "Unable to find matching instruction\n");
}
return false;
}
/// \brief Runs optimizer for the given MBB.
///
/// \param MBB Machine basic block to optimize
///
/// \return true if the block was modified
bool EpiphanyLoadStoreOptimizer::optimizeBlock(MachineBasicBlock &MBB) {
bool Modified = false;
// Find loads and stores that can be merged into a single load or store
// pair instruction.
// e.g.,
// str r0, [fp]
// str r1, [fp, #1]
// ; becomes
// strd r0, [fp]
for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
MBBI != E;) {
if (isPairableLoadStoreInst(*MBBI) && tryToPairLoadStoreInst(MBBI))
Modified = true;
else
++MBBI;
}
return Modified;
}
INITIALIZE_PASS_BEGIN(EpiphanyLoadStoreOptimizer, "epiphany-ls-opt", "Epiphany Load Store Optimization", false, false)
INITIALIZE_PASS_END(EpiphanyLoadStoreOptimizer, "epiphany-ls-opt", "Epiphany Load Store Optimization", false, false)
bool EpiphanyLoadStoreOptimizer::runOnMachineFunction(MachineFunction &Fn) {
DEBUG(dbgs() << "\nRunning Epiphany Load/Store Optimization Pass\n");
if (skipFunction(*Fn.getFunction()))
return false;
Subtarget = &static_cast<const EpiphanySubtarget &>(Fn.getSubtarget());
TII = Subtarget->getInstrInfo();
TRI = Subtarget->getRegisterInfo();
TFI = Subtarget->getFrameLowering();
MFI = &Fn.getFrameInfo();
MRI = &Fn.getRegInfo();
MF = &Fn;
// Get stack growth direction
StackGrowsDown = TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
LastLocalBlockOffset = StackGrowsDown ? -4 : 4;
// Resize the modified and used register bitfield trackers. We do this once
// per function and then clear the bitfield each time we optimize a load or
// store.
ModifiedRegs.resize(MRI->getNumVirtRegs() + TRI->getNumRegs());
UsedRegs.resize(MRI->getNumVirtRegs() + TRI->getNumRegs());
bool Modified = false;
for (auto &MBB : Fn) {
Modified |= optimizeBlock(MBB);
if (Modified) {
MFI->setUseLocalStackAllocationBlock(true);
}
}
// Adjust local frame block size
int64_t LocalFrameSize = StackGrowsDown ? -LastLocalBlockOffset - 4 : LastLocalBlockOffset - 4;
MFI->setLocalFrameSize(LocalFrameSize);
return Modified;
}
/// createEpiphanyLoadStoreOptimizationPass - returns an instance of the
/// load / store optimization pass.
FunctionPass *llvm::createEpiphanyLoadStoreOptimizationPass() {
return new EpiphanyLoadStoreOptimizer();
}