-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsetup.py
66 lines (64 loc) · 4.36 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from setuptools import setup
with open('requirements.txt', 'r') as f:
install_requires = list()
dependency_links = list()
for line in f:
re = line.strip()
if re:
install_requires.append(re)
setup(name='dsbox-primitives',
version='1.5.3',
description='DSBox data processing primitives for both cleaning and featurizer',
author='USC ISI',
url='https://github.com/usc-isi-i2/dsbox-primitives.git',
maintainer='Ke-Thia Yao',
license='MIT',
packages=[
'dsbox',
'dsbox.datapreprocessing',
'dsbox.datapreprocessing.cleaner',
'dsbox.datapostprocessing',
'dsbox.datapreprocessing.featurizer',
'dsbox.datapreprocessing.featurizer.multiTable',
'dsbox.datapreprocessing.featurizer.image',
'dsbox.datapreprocessing.featurizer.pass',
'dsbox.datapreprocessing.featurizer.timeseries'
],
zip_safe=False,
python_requires='>=3.6',
install_requires=install_requires,
keywords='d3m_primitive',
entry_points={
'd3m.primitives': [
'classification.ensemble_voting.DSBOX = dsbox.datapostprocessing:EnsembleVoting',
'classification.lstm.DSBOX = dsbox.datapreprocessing.featurizer.image:LSTM',
'data_cleaning.cleaning_featurizer.DSBOX = dsbox.datapreprocessing.cleaner:CleaningFeaturizer',
# 'data_cleaning.column_fold.DSBOX = dsbox.datapreprocessing.cleaner:FoldColumns',
'data_cleaning.label_encoder.DSBOX = dsbox.datapreprocessing.cleaner:Labler',
'data_transformation.dataframe_to_tensor.DSBOX = dsbox.datapreprocessing.featurizer.image:DataFrameToTensor',
'data_transformation.do_nothing.DSBOX = dsbox.datapreprocessing.featurizer.pass:DoNothing',
'data_transformation.do_nothing_for_dataset.DSBOX = dsbox.datapreprocessing.featurizer.pass:DoNothingForDataset',
'data_transformation.encoder.DSBOX = dsbox.datapreprocessing.cleaner:Encoder',
'data_cleaning.greedy_imputation.DSBOX = dsbox.datapreprocessing.cleaner:GreedyImputation',
'data_transformation.horizontal_concat.DSBOX = dsbox.datapostprocessing:HorizontalConcat',
'data_cleaning.iterative_regression_imputation.DSBOX = dsbox.datapreprocessing.cleaner:IterativeRegressionImputation',
'data_cleaning.mean_imputation.DSBOX = dsbox.datapreprocessing.cleaner:MeanImputation',
'data_transformation.splitter.DSBOX = dsbox.datapreprocessing.cleaner:Splitter',
'data_transformation.time_series_to_list.DSBOX = dsbox.datapreprocessing.featurizer.timeseries:TimeseriesToList',
'data_transformation.unary_encoder.DSBOX = dsbox.datapreprocessing.cleaner:UnaryEncoder',
# 'data_transformation.unfold.DSBOX = dsbox.datapostprocessing:Unfold',
'data_transformation.vertical_concatenate.DSBOX = dsbox.datapostprocessing:VerticalConcat',
'data_transformation.to_numeric.DSBOX = dsbox.datapreprocessing.cleaner:ToNumeric',
'feature_extraction.inceptionV3_image_feature.DSBOX = dsbox.datapreprocessing.featurizer.image:InceptionV3ImageFeature',
'feature_extraction.multitable_featurization.DSBOX = dsbox.datapreprocessing.featurizer.multiTable:MultiTableFeaturization',
'feature_extraction.random_projection_timeseries_featurization.DSBOX = dsbox.datapreprocessing.featurizer.timeseries:RandomProjectionTimeSeriesFeaturization',
'feature_extraction.resnet50_image_feature.DSBOX = dsbox.datapreprocessing.featurizer.image:ResNet50ImageFeature',
'feature_extraction.vgg16_image_feature.DSBOX = dsbox.datapreprocessing.featurizer.image:Vgg16ImageFeature',
'feature_extraction.yolo.DSBOX = dsbox.datapreprocessing.featurizer.image:Yolo',
'normalization.iqr_scaler.DSBOX = dsbox.datapreprocessing.cleaner:IQRScaler',
'schema_discovery.profiler.DSBOX = dsbox.datapreprocessing.cleaner:Profiler',
'time_series_forecasting.arima.DSBOX = dsbox.datapreprocessing.featurizer.timeseries:AutoArima',
# 'time_series_forecasting.rnn_time_series.DSBOX = dsbox.datapreprocessing.featurizer.timeseries:RNNTimeSeries',
],
})