@@ -232,7 +232,7 @@ def series2col_with_dtype(s, name, dtype):
232232 elif dtype == fpb .FLOAT :
233233 kw ['dtype' ] = fpb .FLOAT
234234 kw ['floats' ] = s
235- elif dtype == fpb .STRING : # Pandas dtype for str is object
235+ elif dtype == fpb .STRING :
236236 kw ['strings' ] = s
237237 kw ['dtype' ] = fpb .STRING
238238 elif dtype == fpb .BOOLEAN :
@@ -263,7 +263,7 @@ def series2col(s, name):
263263 elif is_float (s .dtype ):
264264 kw ['dtype' ] = fpb .FLOAT
265265 kw ['floats' ] = s
266- elif s .dtype == np . object : # Pandas dtype for str is object
266+ elif s .dtype == object :
267267 kw ['strings' ] = s
268268 kw ['dtype' ] = fpb .STRING
269269 elif is_bool (s .dtype ):
@@ -278,7 +278,7 @@ def series2col(s, name):
278278 kw ['times' ] = s .astype (np .int64 )
279279 kw ['dtype' ] = fpb .TIME
280280 elif is_categorical_dtype (s .dtype ):
281- # We assume catgorical data is strings
281+ # We assume categorical data is strings
282282 kw ['strings' ] = s .astype (str )
283283 kw ['dtype' ] = fpb .STRING
284284 else :
@@ -297,7 +297,7 @@ def insert_nulls_based_on_null_values_map(df, null_values):
297297 for col_name in null_values [i ].nullColumns :
298298 # boolean columns should be converted to `object` to be able to
299299 # represent None.
300- if df [col_name ].dtype == np . bool and \
300+ if df [col_name ].dtype == bool and \
301301 col_name not in casted_columns :
302302 casted_columns [col_name ] = True
303303 df [col_name ] = df [col_name ].astype (object )
0 commit comments