forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUnique.cpp
178 lines (154 loc) · 6.01 KB
/
Unique.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
// Returns unique elements of input tensor.
#include <ATen/ATen.h>
#include <ATen/Dispatch.h>
#include <set>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
namespace at {
namespace native{
namespace {
template <typename scalar_t>
std::tuple<Tensor, Tensor, Tensor> _unique_cpu_template(
const Tensor& self,
const bool sorted,
const bool return_inverse,
const bool return_counts) {
const Tensor& input = self.contiguous();
const scalar_t* input_data = input.data<scalar_t>();
std::unordered_set<scalar_t> set(input_data, input_data + input.numel());
Tensor output = at::empty({static_cast<int64_t>(set.size())}, input.options());
scalar_t* output_data = output.data<scalar_t>();
if (sorted) {
std::vector<scalar_t> vec(set.begin(), set.end());
std::sort(vec.begin(), vec.end());
std::copy(vec.begin(), vec.end(), output_data);
} else {
std::copy(set.begin(), set.end(), output_data);
}
Tensor inverse_indices = at::empty({0}, self.options().dtype(kLong));
Tensor counts = at::empty({0}, self.options().dtype(kLong));
if (return_inverse || return_counts) {
inverse_indices.resize_(input.sizes());
int64_t* inverse_indices_data = inverse_indices.data<int64_t>();
std::unordered_map<scalar_t, int64_t> inverse_map;
inverse_map.reserve(output.numel());
for (int i = 0; i < output.numel(); ++i) {
inverse_map[output_data[i]] = i;
}
for (int i = 0; i < input.numel(); ++i) {
inverse_indices_data[i] = inverse_map[input_data[i]];
}
if (return_counts) {
counts.resize_(output.sizes());
counts.fill_(0);
for (int i = 0; i < input.numel(); ++i) {
counts[inverse_map[input_data[i]]] += 1;
}
}
}
return std::make_tuple(output, inverse_indices, counts);
}
template<class ForwardIt>
ForwardIt _unique_dim_cpu_impl(ForwardIt first, ForwardIt last,
std::vector<int64_t>& indices, Tensor inverse_indices_vec, Tensor counts) {
if (first == last) {
return last;
}
// save to calculate distance to iterators
ForwardIt begin = first;
// set first inverse index and count
inverse_indices_vec[indices[0]] = 0;
counts[0] += 1;
ForwardIt result = first;
while (++first != last) {
if (!at::equal(*result, *first) && ++result != first) {
*result = std::move(*first);
}
int64_t idx_result = std::distance(begin, result);
int64_t idx_first = std::distance(begin, first);
inverse_indices_vec[indices[idx_first]] = idx_result;
counts[idx_result] += 1;
}
return ++result;
}
template <typename scalar_t>
std::tuple<Tensor, Tensor, Tensor> _unique_dim_cpu_template(
const Tensor& self,
const int64_t dim,
const bool return_inverse,
const bool return_counts) {
// reshape tensor as [dim, -1]
Tensor input_flat = self.transpose(dim, 0);
auto orig_sizes = input_flat.sizes().vec();
input_flat = input_flat.contiguous().view({input_flat.size(0), -1});
std::vector<int64_t> indices(input_flat.size(0));
std::iota(indices.begin(), indices.end(), 0);
int64_t numel = input_flat.size(1);
scalar_t* input_flat_ptr = ((scalar_t*)input_flat.data_ptr());
// sort indices using data
std::sort(indices.begin(), indices.end(),
[&](int64_t a, int64_t b) -> bool {
for (int64_t i = 0; i < numel; ++i) {
scalar_t lhs = input_flat_ptr[i + a * numel];
scalar_t rhs = input_flat_ptr[i + b * numel];
if (lhs < rhs) {
return true;
} else if (lhs > rhs) {
return false;
}
}
return false;
});
Tensor input_sorted = at::empty(input_flat.sizes(), input_flat.options());
for (int i = 0; i < indices.size(); ++i) {
input_sorted[i] = input_flat[indices[i]];
}
Tensor inverse_indices = at::empty(indices.size(), self.options().dtype(kLong));
Tensor counts = at::zeros(indices.size(), self.options().dtype(kLong));
std::vector<Tensor> input_unbind = at::unbind(input_sorted, 0);
auto last = _unique_dim_cpu_impl(
input_unbind.begin(), input_unbind.end(), indices, inverse_indices, counts);
input_unbind.erase(last, input_unbind.end());
counts = at::narrow(counts, 0, 0, input_unbind.size());
// reshape back
auto output = at::stack(input_unbind, 0);
auto new_sizes = std::vector<int64_t>(orig_sizes);
new_sizes[0] = -1;
output = output.view(new_sizes);
output = output.transpose(0, dim);
return std::make_tuple(output, inverse_indices, counts);
}
} // namespace
std::tuple<Tensor, Tensor>
_unique_cpu(const Tensor& self, const bool sorted, const bool return_inverse) {
return AT_DISPATCH_ALL_TYPES(self.scalar_type(), "unique", [&] {
Tensor output, inverse;
std::tie(output, inverse, std::ignore) = _unique_cpu_template<scalar_t>(self, sorted, return_inverse, false);
return std::make_tuple(output, inverse);
});
}
std::tuple<Tensor, Tensor, Tensor>
_unique2_cpu(const Tensor& self, const bool sorted, const bool return_inverse, const bool return_counts) {
return AT_DISPATCH_ALL_TYPES(self.scalar_type(), "unique", [&] {
return _unique_cpu_template<scalar_t>(self, sorted, return_inverse, return_counts);
});
}
std::tuple<Tensor, Tensor>
_unique_dim_cpu(const Tensor& self, const int64_t dim, const bool sorted, const bool return_inverse) {
return AT_DISPATCH_ALL_TYPES(self.scalar_type(), "unique_dim", [&] {
// The current implementation using `dim` always sorts due to unhashable tensors
Tensor output, inverse;
std::tie(output, inverse, std::ignore) = _unique_dim_cpu_template<scalar_t>(self, dim, return_inverse, false);
return std::make_tuple(output, inverse);
});
}
std::tuple<Tensor, Tensor, Tensor>
_unique_dim2_cpu(const Tensor& self, const int64_t dim, const bool sorted, const bool return_inverse, const bool return_counts) {
return AT_DISPATCH_ALL_TYPES(self.scalar_type(), "unique_dim", [&] {
// The current implementation using `dim` always sorts due to unhashable tensors
return _unique_dim_cpu_template<scalar_t>(self, dim, return_inverse, return_counts);
});
}
} // namespace native
} // namespace at