forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUpSampleTrilinear3d.cpp
389 lines (342 loc) · 12.6 KB
/
UpSampleTrilinear3d.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
// Adapted from interp.cpp from Caffe util by Pauline Luc
// Originally developed by George Papandreou
#include <ATen/ATen.h>
#include <ATen/NativeFunctions.h>
#include <ATen/native/UpSample.h>
namespace at {
namespace native {
namespace {
template <typename scalar_t>
static void upsample_trilinear3d_out_frame(
scalar_t* odata,
scalar_t* idata,
int64_t input_depth,
int64_t input_height,
int64_t input_width,
int64_t output_depth,
int64_t output_height,
int64_t output_width,
int64_t nbatch,
int64_t channels,
bool align_corners) {
channels = channels * nbatch;
// special case: just copy
if (input_depth == output_depth && input_height == output_height &&
input_width == output_width) {
for (int64_t t2 = 0; t2 < output_depth; ++t2) {
const int64_t t1 = t2;
for (int64_t h2 = 0; h2 < output_height; ++h2) {
const int64_t h1 = h2;
for (int64_t w2 = 0; w2 < output_width; ++w2) {
const int64_t w1 = w2;
const scalar_t* pos1 =
&idata[t1 * input_height * input_width + h1 * input_width + w1];
scalar_t* pos2 =
&odata
[t2 * output_height * output_width + h2 * output_width + w2];
for (int64_t c = 0; c < channels; ++c) {
pos2[0] = pos1[0];
pos1 += input_width * input_height * input_depth;
pos2 += output_width * output_height * output_depth;
}
}
}
}
return;
}
const scalar_t rdepth = linear_upsample_compute_scale<scalar_t>(
input_depth, output_depth, align_corners);
const scalar_t rheight = linear_upsample_compute_scale<scalar_t>(
input_height, output_height, align_corners);
const scalar_t rwidth = linear_upsample_compute_scale<scalar_t>(
input_width, output_width, align_corners);
for (int64_t t2 = 0; t2 < output_depth; ++t2) {
const scalar_t t1r = linear_upsample_compute_source_index<scalar_t>(
rdepth, t2, align_corners);
const int64_t t1 = t1r;
const int64_t t1p = (t1 < input_depth - 1) ? 1 : 0;
const scalar_t t1lambda = t1r - t1;
const scalar_t t0lambda = static_cast<scalar_t>(1.) - t1lambda;
for (int64_t h2 = 0; h2 < output_height; ++h2) {
const scalar_t h1r = linear_upsample_compute_source_index<scalar_t>(
rheight, h2, align_corners);
const int64_t h1 = h1r;
const int64_t h1p = (h1 < input_height - 1) ? 1 : 0;
const scalar_t h1lambda = h1r - h1;
const scalar_t h0lambda = static_cast<scalar_t>(1.) - h1lambda;
for (int64_t w2 = 0; w2 < output_width; ++w2) {
const scalar_t w1r = linear_upsample_compute_source_index<scalar_t>(
rwidth, w2, align_corners);
const int64_t w1 = w1r;
const int64_t w1p = (w1 < input_width - 1) ? 1 : 0;
const scalar_t w1lambda = w1r - w1;
const scalar_t w0lambda = static_cast<scalar_t>(1.) - w1lambda;
const scalar_t* pos1 =
&idata[t1 * input_height * input_width + h1 * input_width + w1];
scalar_t* pos2 =
&odata[t2 * output_height * output_width + h2 * output_width + w2];
for (int64_t c = 0; c < channels; ++c) {
pos2[0] = t0lambda *
(h0lambda * (w0lambda * pos1[0] + w1lambda * pos1[w1p]) +
h1lambda *
(w0lambda * pos1[h1p * input_width] +
w1lambda * pos1[h1p * input_width + w1p])) +
t1lambda *
(h0lambda *
(w0lambda * pos1[t1p * input_height * input_width] +
w1lambda *
pos1[t1p * input_height * input_width + w1p]) +
h1lambda *
(w0lambda *
pos1
[t1p * input_height * input_width +
h1p * input_width] +
w1lambda *
pos1
[t1p * input_height * input_width +
h1p * input_width + w1p]));
pos1 += input_width * input_height * input_depth;
pos2 += output_width * output_height * output_depth;
}
}
}
}
}
template <typename scalar_t>
static void upsample_trilinear3d_backward_out_frame(
scalar_t* odata,
scalar_t* idata,
int64_t input_depth,
int64_t input_height,
int64_t input_width,
int64_t output_depth,
int64_t output_height,
int64_t output_width,
int64_t nbatch,
int64_t channels,
bool align_corners) {
channels = channels * nbatch;
// special case: same-size matching grids
if (input_depth == output_depth && input_height == output_height &&
input_width == output_width) {
for (int64_t t2 = 0; t2 < output_depth; ++t2) {
const int64_t t1 = t2;
for (int64_t h2 = 0; h2 < output_height; ++h2) {
const int64_t h1 = h2;
for (int64_t w2 = 0; w2 < output_width; ++w2) {
const int64_t w1 = w2;
scalar_t* pos1 =
&idata[t1 * input_height * input_width + h1 * input_width + w1];
const scalar_t* pos2 =
&odata
[t2 * output_height * output_width + h2 * output_width + w2];
for (int64_t c = 0; c < channels; ++c) {
pos1[0] += pos2[0];
pos1 += input_width * input_height * input_depth;
pos2 += output_width * output_height * output_depth;
}
}
}
}
return;
}
const scalar_t rdepth = linear_upsample_compute_scale<scalar_t>(
input_depth, output_depth, align_corners);
const scalar_t rheight = linear_upsample_compute_scale<scalar_t>(
input_height, output_height, align_corners);
const scalar_t rwidth = linear_upsample_compute_scale<scalar_t>(
input_width, output_width, align_corners);
for (int64_t t2 = 0; t2 < output_depth; ++t2) {
const scalar_t t1r = linear_upsample_compute_source_index<scalar_t>(
rdepth, t2, align_corners);
const int64_t t1 = t1r;
const int64_t t1p = (t1 < input_depth - 1) ? 1 : 0;
const scalar_t t1lambda = t1r - t1;
const scalar_t t0lambda = static_cast<scalar_t>(1.) - t1lambda;
for (int64_t h2 = 0; h2 < output_height; ++h2) {
const scalar_t h1r = linear_upsample_compute_source_index<scalar_t>(
rheight, h2, align_corners);
const int64_t h1 = h1r;
const int64_t h1p = (h1 < input_height - 1) ? 1 : 0;
const scalar_t h1lambda = h1r - h1;
const scalar_t h0lambda = static_cast<scalar_t>(1.) - h1lambda;
for (int64_t w2 = 0; w2 < output_width; ++w2) {
const scalar_t w1r = linear_upsample_compute_source_index<scalar_t>(
rwidth, w2, align_corners);
const int64_t w1 = w1r;
const int64_t w1p = (w1 < input_width - 1) ? 1 : 0;
const scalar_t w1lambda = w1r - w1;
const scalar_t w0lambda = static_cast<scalar_t>(1.) - w1lambda;
scalar_t* pos1 =
&idata[t1 * input_height * input_width + h1 * input_width + w1];
const scalar_t* pos2 =
&odata[t2 * output_height * output_width + h2 * output_width + w2];
for (int64_t c = 0; c < channels; ++c) {
pos1[0] += t0lambda * h0lambda * w0lambda * pos2[0];
pos1[w1p] += t0lambda * h0lambda * w1lambda * pos2[0];
pos1[h1p * input_width] += t0lambda * h1lambda * w0lambda * pos2[0];
pos1[h1p * input_width + w1p] +=
t0lambda * h1lambda * w1lambda * pos2[0];
pos1[t1p * input_height * input_width] +=
t1lambda * h0lambda * w0lambda * pos2[0];
pos1[t1p * input_height * input_width + w1p] +=
t1lambda * h0lambda * w1lambda * pos2[0];
pos1[t1p * input_height * input_width + h1p * input_width] +=
t1lambda * h1lambda * w0lambda * pos2[0];
pos1[t1p * input_height * input_width + h1p * input_width + w1p] +=
t1lambda * h1lambda * w1lambda * pos2[0];
pos1 += input_width * input_height * input_depth;
pos2 += output_width * output_height * output_depth;
}
}
}
}
}
static void upsample_trilinear3d_out_cpu_template(
Tensor& output,
const Tensor& input_,
IntArrayRef output_size,
bool align_corners) {
AT_CHECK(
output_size.size() == 3,
"It is expected output_size equals to 3, but got size ",
output_size.size());
int64_t output_depth = output_size[0];
int64_t output_height = output_size[1];
int64_t output_width = output_size[2];
int64_t nbatch = input_.size(0);
int64_t channels = input_.size(1);
int64_t input_depth = input_.size(2);
int64_t input_height = input_.size(3);
int64_t input_width = input_.size(4);
upsample_3d_shape_check(
input_,
Tensor(),
nbatch,
channels,
input_depth,
input_height,
input_width,
output_depth,
output_height,
output_width);
auto input = input_.contiguous();
output.resize_({nbatch, channels, output_depth, output_height, output_width});
output.zero_();
AT_ASSERT(
input_depth > 0 && input_height > 0 && input_width > 0 &&
output_depth > 0 && output_height > 0 && output_width > 0);
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
input.scalar_type(), "upsample_trilinear3d", [&] {
auto* idata = input.data<scalar_t>();
auto* odata = output.data<scalar_t>();
upsample_trilinear3d_out_frame<scalar_t>(
odata,
idata,
input_depth,
input_height,
input_width,
output_depth,
output_height,
output_width,
nbatch,
channels,
align_corners);
});
}
static void upsample_trilinear3d_backward_out_cpu_template(
Tensor& grad_input,
const Tensor& grad_output_,
IntArrayRef output_size,
IntArrayRef input_size,
bool align_corners) {
AT_CHECK(
output_size.size() == 3,
"It is expected output_size equals to 3, but got size ",
output_size.size());
AT_CHECK(
input_size.size() == 5,
"It is expected input_size equals to 5, but got size ",
input_size.size());
int64_t output_depth = output_size[0];
int64_t output_height = output_size[1];
int64_t output_width = output_size[2];
int64_t nbatch = input_size[0];
int64_t channels = input_size[1];
int64_t input_depth = input_size[2];
int64_t input_height = input_size[3];
int64_t input_width = input_size[4];
upsample_3d_shape_check(
Tensor(),
grad_output_,
nbatch,
channels,
input_depth,
input_height,
input_width,
output_depth,
output_height,
output_width);
auto grad_output = grad_output_.contiguous();
grad_input.resize_(
{nbatch, channels, input_depth, input_height, input_width});
grad_input.zero_();
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
grad_output.scalar_type(), "upsample_trilinear3d_backward", [&] {
scalar_t* idata = grad_input.data<scalar_t>();
scalar_t* odata = grad_output.data<scalar_t>();
upsample_trilinear3d_backward_out_frame<scalar_t>(
odata,
idata,
input_depth,
input_height,
input_width,
output_depth,
output_height,
output_width,
nbatch,
channels,
align_corners);
});
}
} // namespace
Tensor& upsample_trilinear3d_out_cpu(
Tensor& output,
const Tensor& input,
IntArrayRef output_size,
bool align_corners) {
upsample_trilinear3d_out_cpu_template(
output, input, output_size, align_corners);
return output;
}
Tensor upsample_trilinear3d_cpu(
const Tensor& input,
IntArrayRef output_size,
bool align_corners) {
auto output = at::empty({0}, input.options());
upsample_trilinear3d_out_cpu_template(
output, input, output_size, align_corners);
return output;
}
Tensor& upsample_trilinear3d_backward_out_cpu(
Tensor& grad_input,
const Tensor& grad_output,
IntArrayRef output_size,
IntArrayRef input_size,
bool align_corners) {
upsample_trilinear3d_backward_out_cpu_template(
grad_input, grad_output, output_size, input_size, align_corners);
return grad_input;
}
Tensor upsample_trilinear3d_backward_cpu(
const Tensor& grad_output,
IntArrayRef output_size,
IntArrayRef input_size,
bool align_corners) {
auto grad_input = at::zeros(input_size, grad_output.options());
upsample_trilinear3d_backward_out_cpu_template(
grad_input, grad_output, output_size, input_size, align_corners);
return grad_input;
}
} // namespace native
} // namespace at