-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathpreprocess_dataset.py
39 lines (29 loc) · 1.26 KB
/
preprocess_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import numpy as np
import valohai
def main():
# valohai.prepare enables us to update the valohai.yaml configuration file with
# the Valohai command-line client by running `valohai yaml step preprocess_dataset.py`
valohai.prepare(
step='preprocess-dataset',
image='python:3.9',
default_inputs={
'dataset': 'https://valohaidemo.blob.core.windows.net/mnist/mnist.npz',
},
)
# Read input files from Valohai inputs directory
# This enables Valohai to version your training data
# and cache the data for quick experimentation
print('Loading data')
with np.load(valohai.inputs('dataset').path(), allow_pickle=True) as file:
x_train, y_train = file['x_train'], file['y_train']
x_test, y_test = file['x_test'], file['y_test']
print('Preprocessing data')
x_train, x_test = x_train / 255.0, x_test / 255.0
# Write output files to Valohai outputs directory
# This enables Valohai to version your data
# and upload output it to the default data store
print('Saving preprocessed data')
path = valohai.outputs().path('preprocessed_mnist.npz')
np.savez_compressed(path, x_train=x_train, y_train=y_train, x_test=x_test, y_test=y_test)
if __name__ == '__main__':
main()