Skip to content

Puncturing convolutional code at rate 1/2 to get rate 3/4 #98

Open
@mpaparna

Description

Hi,
I am trying to execute the readme.md example for convolutional coding at code rate 3/4. The generator matrix [5, 7] for R=1/2 is used and punctured with [[1,0,1],[1,1,0]] to get R=3/4. But the BER values of viterbi decoded outputs are higher than that of uncoded output. Also the size of the coded bits is as per 1/2 rate and not 3/4. Is it an issue with the 'conv_encode' function or am I missing any steps in between?

Also is there any method to get the coding rate 3/4 using generator matrix?

import numpy as np
import commpy.channelcoding.convcode as cc
import commpy.modulation as modulation

def BER_calc(a, b):
  num_ber = np.sum(np.abs(a - b))
  ber = np.mean(np.abs(a - b))
  return int(num_ber), ber

N = 100 #number of symbols per the frame
message_bits = np.random.randint(0, 2, N) # message

M = 2 # modulation order (BPSK)
k = np.log2(M) #number of bit per modulation symbol
modem = modulation.PSKModem(M) # M-PSK modem initialization

generator_matrix = np.array([[5, 7]]) # generator branches
trellis = cc.Trellis(np.array([2]), generator_matrix) # Trellis structure
punctureMatrix=np.array([[1,0,1],[1,1,0]])

rate = 3/4 # code rate
L = 7 # constraint length
m = np.array([L-1]) # number of delay elements

tb_depth = 5*(m.sum() + 1) # traceback depth

EbNo = 5 # energy per bit to noise power spectral density ratio (in dB)
snrdB = EbNo + 10*np.log10(k*rate) # Signal-to-Noise ratio (in dB)
noiseVar = 10**(-snrdB/10) # noise variance (power)

N_c = 10 # number of trials

BER_soft = np.zeros(N_c)
BER_hard = np.zeros(N_c)
BER_uncoded = np.zeros(N_c)

for cntr in range(N_c):
  
  message_bits = np.random.randint(0, 2, N) # message
  coded_bits = cc.conv_encode(message_bits, trellis,puncture_matrix=punctureMatrix) # encoding
  modulated = modem.modulate(coded_bits) # modulation
  modulated_uncoded = modem.modulate(message_bits) # modulation (uncoded case)

  Es = np.mean(np.abs(modulated)**2) # symbol energy
  No = Es/((10**(EbNo/10))*np.log2(M)) # noise spectrum density

  noisy = modulated + np.sqrt(No/2)*\
      (np.random.randn(modulated.shape[0])+\
       1j*np.random.randn(modulated.shape[0])) # AWGN
  
  noisy_uncoded = modulated_uncoded + np.sqrt(No/2)*\
      (np.random.randn(modulated_uncoded.shape[0])+\
       1j*np.random.randn(modulated_uncoded.shape[0])) # AWGN (uncoded case)

  demodulated_soft = modem.demodulate(noisy, demod_type='soft', noise_var=noiseVar) # demodulation (soft output)
  demodulated_hard = modem.demodulate(noisy, demod_type='hard') # demodulation (hard output)
  demodulated_uncoded = modem.demodulate(noisy_uncoded, demod_type='hard') # demodulation (uncoded case)

  decoded_soft = cc.viterbi_decode(demodulated_soft, trellis, tb_depth, decoding_type='unquantized') # decoding (soft decision)
  decoded_hard = cc.viterbi_decode(demodulated_hard, trellis, tb_depth, decoding_type='hard') # decoding (hard decision)

  NumErr, BER_soft[cntr] = BER_calc(message_bits, decoded_soft[:message_bits.size]) # bit-error ratio (soft decision)
  NumErr, BER_hard[cntr] = BER_calc(message_bits, decoded_hard[:message_bits.size]) # bit-error ratio (hard decision)
  NumErr, BER_uncoded[cntr] = BER_calc(message_bits, demodulated_uncoded[:message_bits.size]) # bit-error ratio (uncoded case)

mean_BER_soft = BER_soft.mean() # averaged bit-error ratio (soft decision)
mean_BER_hard = BER_hard.mean() # averaged bit-error ratio (hard decision)
mean_BER_uncoded = BER_uncoded.mean() # averaged bit-error ratio (uncoded case)

print("Soft decision:\n{}\n".format(mean_BER_soft))
print("Hard decision:\n{}\n".format(mean_BER_hard))
print("Uncoded message:\n{}\n".format(mean_BER_uncoded))

PS: The package and libraries are from the Github cloned version.

Activity

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions