-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathapp.py
193 lines (166 loc) · 5.53 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
from flask import Flask, render_template, Response, jsonify, request
import cv2
import os
import requests
from PIL import Image
from script import predict
import numpy as np
from evaluate import execute
from pose_parser import pose_parse
import pickle
from sklearn.cluster import KMeans
import description
import time
cascPath = "./models/haarcascade_frontalface_default.xml"
faceCascade = cv2.CascadeClassifier(cascPath)
app = Flask(__name__)
flag = True
name = ""
selection = ""
title = ""
price = ""
kmeansPath = "./models/kmeans.pkl"
with open(kmeansPath, 'rb') as file:
kmeans = pickle.load(file)
class VideoCamera(object):
def __init__(self):
self.video = cv2.VideoCapture(0)
def __del__(self):
self.video.release()
def get_frame(self):
ret, frame = self.video.read()
frame = frame[48:433, 176:465]
img = cv2.resize(frame, (192, 256))
cv2.imwrite('temp.jpg', img)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(
gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(30, 30)
)
err = False
if len(faces) == 0:
err = True
for (x, y, w, h) in faces:
cv2.imwrite('face.jpg', frame[y-10:y+h+10, x:x+w])
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
return frame, err
@app.route('/')
def index():
global flag
flag = True
return render_template('index.html')
@app.route('/final')
def final():
return render_template('final.html')
@app.route('/men')
def men():
return render_template('men.html')
@app.route('/women')
def women():
return render_template('women.html')
@app.route('/feature', methods=['GET', 'POST'])
def feature():
if request.method == "GET":
img1 = open('face.jpg', 'rb').read()
headers = {'Ocp-Apim-Subscription-Key': "//key",
'Content-Type': 'application/octet-stream'}
response = requests.post(
"https://cv21.cognitiveservices.azure.com/vision/v3.1/analyze?visualFeatures=faces,color", headers=headers, data=img1)
response.raise_for_status()
analysis = response.json()
try:
age = analysis["faces"][0]["age"]
except:
age = 23
age = int(age)-10
try:
gender = analysis["faces"][0]["gender"]
except:
gender = "Male"
try:
ethnicity = analysis["color"]["dominantColors"][0]
except:
ethnicity = "Brown"
else:
age = int(request.form["age"])
gender = request.form["gender"]
ethnicity = request.form["eth"]
print(ethnicity)
a = 100 if gender == "Female" else -100
b = age-2
c = age+2
if ethnicity == "White" or ethnicity == "Pink":
d, e, f = 1, 0, 0
elif ethnicity == "Black":
d, e, f = 0, 1, 0
else:
d, e, f = 0, 0, 1
cluster = kmeans.predict(np.array([[a, b, c, d, e, f]]))[0]
print(cluster)
clusters = os.listdir('./clusters/'+str(cluster))
return render_template('projection.html', age=age, gender=gender, eth=ethnicity, cluster=clusters, len=len(clusters), desc=description.desc[cluster])
@app.route('/cast', methods=['POST'])
def cast():
global name, selection, title, price
name = request.form["name"]
selection = request.form["selection"]
title = request.form["title"]
price = request.form["price"]
title = title.strip()
return render_template('final.html', sel=selection, title=title, price=price)
def gen(camera):
timer = 100
global video_stream
while timer > 0:
frame, err = camera.get_frame()
frame = cv2.putText(frame, str(timer//10), (20, 40), cv2.FONT_HERSHEY_SIMPLEX,
1.5, (0, 0, 0), 4, cv2.LINE_AA)
ret, jpeg = cv2.imencode('.jpg', frame)
frame = jpeg.tobytes()
if err != True:
timer -= 1
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n\r\n')
video_stream.__del__()
def gen_stored(path):
img = cv2.imread(path)
ret, jpeg = cv2.imencode('.jpg', img)
frame = jpeg.tobytes()
yield (b'--frame\r\n'b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n\r\n')
@app.route('/video_feed')
def video_feed():
global video_stream, flag
if flag:
video_stream = VideoCamera()
flag = False
return Response(gen(video_stream), mimetype='multipart/x-mixed-replace; boundary=frame')
else:
return Response(gen_stored("temp.jpg"), mimetype='multipart/x-mixed-replace; boundary=frame')
@app.route('/final_img')
def final_img():
global name, selection
person = Image.open('temp.jpg')
person.save("./Database/val/person/"+name+".jpg")
pose_parse(name)
execute()
f = open("./Database/val_pairs.txt", "w")
f.write(name+".jpg "+selection+"_1.jpg")
f.close()
predict()
im = Image.open("./output/second/TOM/val/" + selection + "_1.jpg")
width, height = im.size
left = width / 3
top = 2 * height / 3
right = width
bottom = height
im1 = im.crop((left, top, right, bottom))
newsize = (600, 450)
im1 = im1.resize(newsize)
im1.save("./output/second/TOM/val/" + selection + "_1.jpg")
result = Image.open("./output/second/TOM/val/" + selection + "_1.jpg")
result.save("data.jpg")
return Response(gen_stored("data.jpg"), mimetype='multipart/x-mixed-replace; boundary=frame')
if __name__ == '__main__':
app.run(host='localhost', port=5000, debug=False)