-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathevaluate.py
138 lines (111 loc) · 4.61 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
import torch
import argparse
import numpy as np
from PIL import Image
import torch.nn as nn
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
from model import network
from datasets import SCHPDataset, transform_logits
dataset_settings = {
'lip': {
'input_size': [473, 473],
'num_classes': 20,
'label': ['Background', 'Hat', 'Hair', 'Glove', 'Sunglasses', 'Upper-clothes', 'Dress', 'Coat',
'Socks', 'Pants', 'Jumpsuits', 'Scarf', 'Skirt', 'Face', 'Left-arm', 'Right-arm',
'Left-leg', 'Right-leg', 'Left-shoe', 'Right-shoe']
},
'atr': {
'input_size': [512, 512],
'num_classes': 18,
'label': ['Background', 'Hat', 'Hair', 'Sunglasses', 'Upper-clothes', 'Skirt', 'Pants', 'Dress', 'Belt',
'Left-shoe', 'Right-shoe', 'Face', 'Left-leg', 'Right-leg', 'Left-arm', 'Right-arm', 'Bag', 'Scarf']
},
'pascal': {
'input_size': [512, 512],
'num_classes': 7,
'label': ['Background', 'Head', 'Torso', 'Upper Arms', 'Lower Arms', 'Upper Legs', 'Lower Legs'],
}
}
def get_arguments():
parser = argparse.ArgumentParser(
description="Self Correction for Human Parsing")
parser.add_argument("--dataset", type=str, default='lip',
choices=['lip', 'atr', 'pascal'])
parser.add_argument("--restore-weight", type=str, default='./models/exp-schp-201908261155-lip.pth',
help="restore pretrained model parameters.")
parser.add_argument("--input", type=str, default='./Database/val/person/',
help="path of input image folder.")
parser.add_argument("--output", type=str, default='./Database/val/person-parse',
help="path of output image folder.")
parser.add_argument("--logits", action='store_true',
default=False, help="whether to save the logits.")
return parser.parse_args()
def get_palette(num_cls):
n = num_cls
palette = [0] * (n * 3)
for j in range(0, n):
lab = j
palette[j * 3 + 0] = 0
palette[j * 3 + 1] = 0
palette[j * 3 + 2] = 0
i = 0
while lab:
palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i))
palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i))
palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i))
i += 1
lab >>= 3
return palette
def get():
args = get_arguments()
num_classes = dataset_settings[args.dataset]['num_classes']
input_size = dataset_settings[args.dataset]['input_size']
label = dataset_settings[args.dataset]['label']
model = network(num_classes=num_classes, pretrained=None)
model = nn.DataParallel(model)
state_dict = torch.load(args.restore_weight)
model.load_state_dict(state_dict)
model.eval()
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.406, 0.456, 0.485], std=[
0.225, 0.224, 0.229])
])
dataset = SCHPDataset(
root=args.input, input_size=input_size, transform=transform)
dataloader = DataLoader(dataset)
if not os.path.exists(args.output):
os.makedirs(args.output)
palette = get_palette(num_classes)
with torch.no_grad():
for idx, batch in enumerate(dataloader):
image, meta = batch
img_name = meta['name'][0]
c = meta['center'].numpy()[0]
s = meta['scale'].numpy()[0]
w = meta['width'].numpy()[0]
h = meta['height'].numpy()[0]
output = model(image)
upsample = torch.nn.Upsample(
size=input_size, mode='bilinear', align_corners=True)
upsample_output = upsample(output)
upsample_output = upsample_output.squeeze()
upsample_output = upsample_output.permute(1, 2, 0) # CHW -> HWC
logits_result = transform_logits(
upsample_output.data.cpu().numpy(), c, s, w, h, input_size=input_size)
parsing_result = np.argmax(logits_result, axis=2)
parsing_result_path = os.path.join(
args.output, img_name[:-4]+'.png')
output_img = Image.fromarray(
np.asarray(parsing_result, dtype=np.uint8))
output_img.putpalette(palette)
output_img.save(parsing_result_path)
if args.logits:
logits_result_path = os.path.join(
args.output, img_name[:-4] + '.npy')
np.save(logits_result_path, logits_result)
return
def execute():
get()