|
| 1 | + |
| 2 | + |
| 3 | +%% test 1: constructor |
| 4 | +L1 = GlobalAveragePooling2DLayer(); |
| 5 | + |
| 6 | + |
| 7 | +%% test 2: inference |
| 8 | +L1 = GlobalAveragePooling2DLayer(); |
| 9 | +x = load('one_image.mat'); |
| 10 | +x = x.one_image; |
| 11 | +L1.evaluate(x); |
| 12 | + |
| 13 | + |
| 14 | +%% test 3: equivalence (inference) |
| 15 | +L1 = GlobalAveragePooling2DLayer(); |
| 16 | +x = load('one_image.mat'); |
| 17 | +x = x.one_image; |
| 18 | +y = L1.evaluate(x); |
| 19 | + |
| 20 | +dlX = dlarray(x, 'SSBC'); |
| 21 | +dlY = avgpool(dlX,'global'); |
| 22 | + |
| 23 | +assert(all(dlY == y, 'all')); |
| 24 | + |
| 25 | +%% test 4: inference, higher dimension |
| 26 | + |
| 27 | +miniBatchSize = 10; |
| 28 | +inputSize = [5 5]; |
| 29 | +numChannels = 3; |
| 30 | +X = rand(inputSize(1),inputSize(2),numChannels,miniBatchSize); |
| 31 | + |
| 32 | +L1 = GlobalAveragePooling2DLayer(); |
| 33 | +Y = L1.evaluate(X); |
| 34 | + |
| 35 | +dlX = dlarray(X,'SSCB'); |
| 36 | +dlY = avgpool(dlX,'global'); |
| 37 | +dlY = extractdata(dlY); |
| 38 | + |
| 39 | +assert(all(dlY == Y, 'all')); |
| 40 | + |
| 41 | +%% test 5: reachability |
| 42 | + |
| 43 | +x = load('one_image.mat'); |
| 44 | +X = x.one_image; |
| 45 | + |
| 46 | +lb = X - 0.1; |
| 47 | +ub = X + 0.1; |
| 48 | +IS = ImageStar(lb,ub); |
| 49 | + |
| 50 | +L1 = GlobalAveragePooling2DLayer(); |
| 51 | +Y = L1.evaluate(X); |
| 52 | +Yset = L1.reach(IS,'approx-star'); |
| 53 | + |
| 54 | +[LB,UB] = Yset.estimateRanges; |
| 55 | + |
| 56 | +assert(all(LB <= Y,'all')) |
| 57 | +assert(all(UB >= Y,'all')) |
| 58 | + |
| 59 | +%% test 6: reach (sound) |
| 60 | + |
| 61 | +N = 100; % random samples |
| 62 | + |
| 63 | +x = load('one_image.mat'); |
| 64 | +X = x.one_image; |
| 65 | + |
| 66 | +lb = X - 0.1; |
| 67 | +ub = X + 0.1; |
| 68 | +IS = ImageStar(lb,ub); |
| 69 | +x_samples = IS.sample(N); |
| 70 | + |
| 71 | +L1 = GlobalAveragePooling2DLayer(); |
| 72 | +Yset = L1.reach(IS,'approx-star'); |
| 73 | +[LB,UB] = Yset.estimateRanges; |
| 74 | + |
| 75 | +for i=1:N |
| 76 | + xi = x_samples{i}; |
| 77 | + Yi = L1.evaluate(xi); |
| 78 | + assert(all(LB <= Yi,'all')) |
| 79 | + assert(all(UB >= Yi,'all')) |
| 80 | +end |
| 81 | + |
| 82 | + |
| 83 | +%% test 7: reachability |
| 84 | + |
| 85 | +miniBatchSize = 1; |
| 86 | +inputSize = [5 5]; |
| 87 | +numChannels = 3; |
| 88 | +X = rand(inputSize(1),inputSize(2),numChannels,miniBatchSize); |
| 89 | + |
| 90 | +lb = X - 0.1; |
| 91 | +ub = X + 0.1; |
| 92 | +IS = ImageStar(lb,ub); |
| 93 | + |
| 94 | +L1 = GlobalAveragePooling2DLayer(); |
| 95 | +Y = L1.evaluate(X); |
| 96 | +Yset = L1.reach(IS,'approx-star'); |
| 97 | + |
| 98 | +[LB,UB] = Yset.estimateRanges; |
| 99 | + |
| 100 | +assert(all(LB <= Y,'all')) |
| 101 | +assert(all(UB >= Y,'all')) |
| 102 | + |
| 103 | +%% test 8: reach (sound) |
| 104 | + |
| 105 | +N = 200; % random samples |
| 106 | + |
| 107 | +miniBatchSize = 1; |
| 108 | +inputSize = [5 5]; |
| 109 | +numChannels = 3; |
| 110 | +X = rand(inputSize(1),inputSize(2),numChannels,miniBatchSize); |
| 111 | + |
| 112 | +lb = X - 0.1; |
| 113 | +ub = X + 0.1; |
| 114 | +IS = ImageStar(lb,ub); |
| 115 | + |
| 116 | +x_samples = IS.sample(N); |
| 117 | + |
| 118 | +L1 = GlobalAveragePooling2DLayer(); |
| 119 | +Yset = L1.reach(IS,'approx-star'); |
| 120 | +[LB,UB] = Yset.estimateRanges; |
| 121 | + |
| 122 | +for i=1:N |
| 123 | + xi = x_samples{i}; |
| 124 | + Yi = L1.evaluate(xi); |
| 125 | + assert(all(LB <= Yi,'all')) |
| 126 | + assert(all(UB >= Yi,'all')) |
| 127 | +end |
| 128 | + |
0 commit comments