forked from modelscope/ClearerVoice-Studio
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig_KUL_eeg_neuroheed_2spk.yaml
41 lines (36 loc) · 1.14 KB
/
config_KUL_eeg_neuroheed_2spk.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
## Config file
# Log
seed: 777
use_cuda: 1 # 1 for True, 0 for False
# dataset
speaker_no: 2
mix_lst_path: ./data/KUL/mixture_data_list_2mix.csv
audio_direc: /mnt/nas_sg/wulanchabu/zexu.pan/datasets/KUL_eeg/audio_8k/
reference_direc: /mnt/nas_sg/wulanchabu/zexu.pan/datasets/KUL_eeg/eeg/
audio_sr: 8000
ref_sr: 128 # reference sampleing rate, lip: 25 , gesture: 15, eeg: 128
# dataloader
num_workers: 8
batch_size: 4 # 2-GPU training with a total effective batch size of 16
accu_grad: 1
effec_batch_size: 8 # per GPU, only used if accu_grad is set to 1, must be multiple times of batch size
max_length: 10 # truncate the utterances in dataloader, in seconds
# network settings
init_from: None # 'None' or a log name 'log_2024-07-22(18:12:13)'
causal: 0 # 1 for True, 0 for False
network_reference:
cue: eeg # lip or speech or gesture or EEG
network_audio:
backbone: neuroheed
N: 256
L: 20
B: 64
H: 128
K: 100
R: 6
# optimizer
loss_type: sisdr # "snr", "sisdr", "hybrid"
init_learning_rate: 0.000125
lr_warmup: 1 # 1 for True, 0 for False
max_epoch: 50
clip_grad_norm: 5