|
1 |
| -import copy |
2 | 1 | import shutil
|
3 | 2 | import tempfile
|
4 | 3 | import unittest
|
5 | 4 |
|
6 | 5 | import torch
|
7 |
| -from compressed_tensors import QUANTIZATION_CONFIG_NAME |
8 |
| -from compressed_tensors.compressors import ModelCompressor |
9 |
| -from compressed_tensors.quantization import QuantizationStatus |
| 6 | +from compressed_tensors.linear.compressed_linear import CompressedLinear |
| 7 | +from compressed_tensors.quantization.utils import iter_named_leaf_modules |
10 | 8 | from parameterized import parameterized_class
|
11 |
| -from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer |
| 9 | +from transformers import AutoModelForCausalLM, AutoTokenizer |
12 | 10 | from transformers.utils.quantization_config import CompressedTensorsConfig
|
13 | 11 |
|
14 | 12 | from tests.testing_utils import parse_params, requires_gpu
|
15 | 13 |
|
16 |
| -CONFIG_DIR = "tests/llmcompressor/transformers/compression/decompression_configs" |
| 14 | +COMPRESSED_LINEAR_CONFIG_DIR = ( |
| 15 | + "tests/llmcompressor/transformers/compression/run_compressed_configs" |
| 16 | +) |
17 | 17 |
|
18 | 18 |
|
19 | 19 | @requires_gpu
|
20 |
| -@parameterized_class(parse_params(CONFIG_DIR)) |
21 |
| -class TestDecompression(unittest.TestCase): |
| 20 | +@parameterized_class(parse_params(COMPRESSED_LINEAR_CONFIG_DIR)) |
| 21 | +class Test_Decompressed_Linear_Uncompressed_Linear(unittest.TestCase): |
22 | 22 | """
|
23 |
| - Check that HFQuantizer decompression is working as expected. |
24 |
| - Manually decompress a compressed model and compare the generations |
| 23 | + Uncompressed-Linear-forward decompressed-Linear-foward check |
25 | 24 |
|
26 |
| - Decompression: |
27 |
| - Given a skeleton model and path to the optimized model, |
28 |
| - write the optimized model's safetensors to the skeleton model and decompress |
29 |
| - Ex. write weight_scale to the skeleton model and then convert from fp4 to fp16 |
| 25 | + Uncompressed: Optimized model saved as run_compressed=False, no need to decompress |
| 26 | + Decompressed: Optimized model saved as run_compressed=True, and decompressed using |
| 27 | + AutoModelForCausalLM decompression |
| 28 | +
|
| 29 | + AutoModelForCausalLM decompression diagram flow https://tinyurl.com/2ynb6wbu |
30 | 30 |
|
31 | 31 | """
|
32 | 32 |
|
33 | 33 | compressed_model_stub = None
|
34 |
| - skeleton_model_stub = None |
35 |
| - |
36 |
| - SAMPLE_INPUTS = [ |
37 |
| - "I love 4-bit quantization because", |
38 |
| - "What is the capital of France?", |
39 |
| - "def fibonacci(n):", |
40 |
| - ] |
| 34 | + uncompressed_model_stub = None |
41 | 35 |
|
42 | 36 | @classmethod
|
43 |
| - def setUpClass(self): |
44 |
| - self.test_dir = tempfile.mkdtemp() |
45 |
| - self.tokenizer = AutoTokenizer.from_pretrained(self.compressed_model_stub) |
| 37 | + def setUpClass(cls): |
| 38 | + cls.test_dir = tempfile.mkdtemp() |
46 | 39 |
|
47 |
| - # Decompress using HFQuantizer from AutoModelForCausalLM |
48 |
| - self.decompressed_model_hf_quantizer = AutoModelForCausalLM.from_pretrained( |
49 |
| - self.compressed_model_stub, |
| 40 | + quantization_config = CompressedTensorsConfig(run_compressed=False) |
| 41 | + |
| 42 | + # Decompressed using HFQuantizer |
| 43 | + # Linear foward |
| 44 | + cls.decompressed_model = AutoModelForCausalLM.from_pretrained( |
| 45 | + cls.compressed_model_stub, |
50 | 46 | torch_dtype="auto",
|
51 | 47 | device_map="auto",
|
52 |
| - quantization_config=CompressedTensorsConfig(run_compressed=False), |
| 48 | + quantization_config=quantization_config, |
53 | 49 | )
|
54 | 50 |
|
55 |
| - # Manually decompress this model |
56 |
| - self.dense_model = AutoModelForCausalLM.from_pretrained( |
57 |
| - self.skeleton_model_stub, |
58 |
| - torch_dtype=self.decompressed_model_hf_quantizer.dtype, |
59 |
| - device_map=self.decompressed_model_hf_quantizer.device, |
| 51 | + # Load model as is at the uncompressed state |
| 52 | + # Linear forward |
| 53 | + cls.uncompressed_model = AutoModelForCausalLM.from_pretrained( |
| 54 | + cls.uncompressed_model_stub, |
| 55 | + torch_dtype=cls.decompressed_model.dtype, |
| 56 | + device_map=cls.decompressed_model.device, |
60 | 57 | )
|
61 | 58 |
|
62 |
| - # decompression from HFQuantizer should populate weight_scale |
63 |
| - assert hasattr( |
64 |
| - self.decompressed_model_hf_quantizer.model.layers[0].self_attn.q_proj, |
65 |
| - "weight_scale", |
66 |
| - ) |
| 59 | + cls.tokenizer = AutoTokenizer.from_pretrained(cls.compressed_model_stub) |
67 | 60 |
|
68 |
| - # dense model should not have weight_scale populated |
69 |
| - assert not hasattr( |
70 |
| - self.dense_model.model.layers[0].self_attn.q_proj, "weight_scale" |
71 |
| - ) |
| 61 | + def test_compressed_matches_decompressed(self): |
| 62 | + SAMPLE_INPUT = [ |
| 63 | + "I love 4-bit quantization because", |
| 64 | + "What is the capital of France?", |
| 65 | + "def fibonacci(n):", |
| 66 | + ] |
| 67 | + |
| 68 | + decompressed_device = self.decompressed_model.device |
| 69 | + uncompressed_device = self.uncompressed_model.device |
72 | 70 |
|
73 |
| - config = AutoConfig.from_pretrained(self.compressed_model_stub) |
| 71 | + # overwrite weights in cpu to cuda |
| 72 | + self.decompressed_model = self.decompressed_model.to(decompressed_device) |
| 73 | + self.uncompressed_model = self.uncompressed_model.to(uncompressed_device) |
74 | 74 |
|
75 |
| - compression_config = getattr(config, QUANTIZATION_CONFIG_NAME, None) |
76 |
| - self.compressor = ModelCompressor.from_compression_config(compression_config) |
77 |
| - self.compressor.quantization_config.quantization_status = ( |
78 |
| - QuantizationStatus.FROZEN |
| 75 | + inputs = self.tokenizer(SAMPLE_INPUT, return_tensors="pt", padding=True).to( |
| 76 | + decompressed_device |
79 | 77 | )
|
80 | 78 |
|
81 |
| - # use the model_path to load the decompressed weights into dense_model |
82 |
| - dense_model = copy.deepcopy(self.dense_model) |
| 79 | + decompressed_output = self.decompressed_model.generate(**inputs, max_length=50) |
83 | 80 |
|
84 |
| - # overwrite the weights of the dense model |
85 |
| - self.compressor.decompress( |
86 |
| - model_path=self.compressed_model_stub, |
87 |
| - model=self.dense_model, |
88 |
| - ) |
| 81 | + inputs = inputs.to(uncompressed_device) |
89 | 82 |
|
90 |
| - # self.dense_model should be decompressed |
91 |
| - assert dense_model is not self.dense_model |
| 83 | + uncompressed_output = self.uncompressed_model.generate(**inputs, max_length=50) |
92 | 84 |
|
93 |
| - self.decompressed_model_manual = self.dense_model |
| 85 | + for idx in range(len(SAMPLE_INPUT)): |
| 86 | + assert torch.equal(decompressed_output[idx], uncompressed_output[idx]) |
94 | 87 |
|
95 |
| - assert hasattr( |
96 |
| - self.decompressed_model_manual.model.layers[0].self_attn.q_proj, |
97 |
| - "weight_scale", |
98 |
| - ) |
| 88 | + @classmethod |
| 89 | + def tearDownClass(cls): |
| 90 | + shutil.rmtree(cls.test_dir) |
| 91 | + del cls.decompressed_model |
| 92 | + del cls.uncompressed_model |
| 93 | + torch.cuda.empty_cache() |
| 94 | + |
| 95 | + |
| 96 | +@requires_gpu |
| 97 | +@parameterized_class(parse_params(COMPRESSED_LINEAR_CONFIG_DIR)) |
| 98 | +class Test_Compressed_CompressedLinear_Decompressed_Linear(unittest.TestCase): |
| 99 | + """ |
| 100 | + Compressed-CompresesdLinear, Decompressed-Linear check |
| 101 | +
|
| 102 | + Compressed: Optimized model saved as run_compressed=True, no decompression |
| 103 | + Decompressed: Optimized model saved as run_compressed=True, and decompressed using |
| 104 | + AutoModelForCausalLM decompression |
| 105 | +
|
| 106 | + All compressed model should have CompressedLinear, which has its custom forward call |
| 107 | +
|
| 108 | + """ |
| 109 | + |
| 110 | + compressed_model_stub = None |
| 111 | + |
| 112 | + @classmethod |
| 113 | + def setUpClass(cls): |
| 114 | + cls.test_dir = tempfile.mkdtemp() |
99 | 115 |
|
100 |
| - def test_hf_quantizer_decompress_match_manual_decompress(self): |
101 |
| - manual_device = self.decompressed_model_manual.device |
102 |
| - decompressed_model_hf_quantizer = self.decompressed_model_hf_quantizer.device |
| 116 | + # Should have CompressedLinear modules |
| 117 | + # Compressed Linear forward |
| 118 | + cls.compressed_model = AutoModelForCausalLM.from_pretrained( |
| 119 | + cls.compressed_model_stub, |
| 120 | + torch_dtype="auto", |
| 121 | + device_map="auto", |
| 122 | + ) |
103 | 123 |
|
104 |
| - self.decompressed_model_manual = self.decompressed_model_manual.to( |
105 |
| - manual_device |
| 124 | + # Should just be linear modules |
| 125 | + # Linear forward |
| 126 | + quantization_config = CompressedTensorsConfig(run_compressed=False) |
| 127 | + cls.decompressed_model = AutoModelForCausalLM.from_pretrained( |
| 128 | + cls.compressed_model_stub, |
| 129 | + torch_dtype=cls.compressed_model.dtype, |
| 130 | + device_map=cls.compressed_model.device, |
| 131 | + quantization_config=quantization_config, |
106 | 132 | )
|
107 |
| - self.decompressed_model_hf_quantizer = self.decompressed_model_hf_quantizer.to( |
108 |
| - decompressed_model_hf_quantizer |
| 133 | + |
| 134 | + cls.tokenizer = AutoTokenizer.from_pretrained(cls.compressed_model_stub) |
| 135 | + |
| 136 | + def test_compressed_linear_modules_exist(self): |
| 137 | + compressed_linear_counts = 0 |
| 138 | + for _, submodule in iter_named_leaf_modules( |
| 139 | + self.compressed_model, |
| 140 | + ): |
| 141 | + if isinstance(submodule, CompressedLinear): |
| 142 | + compressed_linear_counts += 1 |
| 143 | + |
| 144 | + # some linear models are not compressed - ex. lm_head |
| 145 | + assert compressed_linear_counts > 0 |
| 146 | + |
| 147 | + def test_compressed_matches_decompressed__hf_quantizer(self): |
| 148 | + SAMPLE_INPUT = [ |
| 149 | + "I love 4-bit quantization because", |
| 150 | + "What is the capital of France?", |
| 151 | + "def fibonacci(n):", |
| 152 | + ] |
| 153 | + |
| 154 | + decompressed_device = self.decompressed_model.device |
| 155 | + compressed_device = self.compressed_model.device |
| 156 | + |
| 157 | + # overwrite weights in cpu to cuda |
| 158 | + self.decompressed_model = self.decompressed_model.to(decompressed_device) |
| 159 | + self.compressed_model = self.compressed_model.to(compressed_device) |
| 160 | + |
| 161 | + inputs = self.tokenizer(SAMPLE_INPUT, return_tensors="pt", padding=True).to( |
| 162 | + decompressed_device |
109 | 163 | )
|
110 | 164 |
|
111 |
| - for input in self.SAMPLE_INPUTS: |
112 |
| - inputs = self.tokenizer(input, return_tensors="pt", padding=True).to( |
113 |
| - self.decompressed_model_manual.device |
114 |
| - ) |
115 |
| - inputs = inputs.to(self.decompressed_model_manual.device) |
| 165 | + decompressed_model_out = self.decompressed_model.generate( |
| 166 | + **inputs, max_length=50 |
| 167 | + ) |
116 | 168 |
|
117 |
| - decompressed_model_manual_output = self.decompressed_model_manual.generate( |
118 |
| - **inputs, max_length=50 |
119 |
| - ) |
| 169 | + inputs = inputs.to(compressed_device) |
120 | 170 |
|
121 |
| - decompressed_model_hf_quantizer_out = ( |
122 |
| - self.decompressed_model_hf_quantizer.generate(**inputs, max_length=50) |
123 |
| - ) |
| 171 | + compressed_model_out = self.compressed_model.generate(**inputs, max_length=50) |
124 | 172 |
|
125 |
| - assert torch.equal( |
126 |
| - decompressed_model_hf_quantizer_out, decompressed_model_manual_output |
127 |
| - ) |
| 173 | + # Compare outputs for each input |
| 174 | + for idx in range(len(SAMPLE_INPUT)): |
| 175 | + torch.equal(compressed_model_out[idx], decompressed_model_out[idx]) |
128 | 176 |
|
129 | 177 | @classmethod
|
130 |
| - def tearDownClass(self): |
131 |
| - shutil.rmtree(self.test_dir) |
132 |
| - del self.dense_model |
133 |
| - del self.decompressed_model_hf_quantizer |
134 |
| - del self.decompressed_model_manual |
| 178 | + def tearDownClass(cls): |
| 179 | + shutil.rmtree(cls.test_dir) |
| 180 | + del cls.decompressed_model |
| 181 | + del cls.compressed_model |
| 182 | + torch.cuda.empty_cache() |
0 commit comments