-
-
Notifications
You must be signed in to change notification settings - Fork 12k
Description
Your current environment
The output of python collect_env.py
==============================
System Info
==============================
OS : Ubuntu 22.04.5 LTS (x86_64)
GCC version : (Ubuntu 11.4.0-1ubuntu1~22.04.2) 11.4.0
Clang version : Could not collect
CMake version : Could not collect
Libc version : glibc-2.35
==============================
PyTorch Info
==============================
PyTorch version : 2.9.0+cu129
Is debug build : False
CUDA used to build PyTorch : 12.9
ROCM used to build PyTorch : N/A
==============================
Python Environment
==============================
Python version : 3.12.12 (main, Oct 10 2025, 08:52:57) [GCC 11.4.0] (64-bit runtime)
Python platform : Linux-5.14.0-427.65.1.el9_4.x86_64-x86_64-with-glibc2.35
==============================
CUDA / GPU Info
==============================
Is CUDA available : True
CUDA runtime version : 12.9.86
CUDA_MODULE_LOADING set to :
GPU models and configuration :
GPU 0: NVIDIA A100-SXM4-80GB
GPU 1: NVIDIA A100-SXM4-80GB
GPU 2: NVIDIA A100-SXM4-80GB
GPU 3: NVIDIA A100-SXM4-80GB
GPU 4: NVIDIA A100-SXM4-80GB
GPU 5: NVIDIA A100-SXM4-80GB
GPU 6: NVIDIA A100-SXM4-80GB
GPU 7: NVIDIA A100-SXM4-80GB
Nvidia driver version : 550.163.01
cuDNN version : Could not collect
HIP runtime version : N/A
MIOpen runtime version : N/A
Is XNNPACK available : True
==============================
CPU Info
==============================
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 80
On-line CPU(s) list: 0-79
Vendor ID: GenuineIntel
Model name: Intel Xeon Processor (Icelake)
CPU family: 6
Model: 134
Thread(s) per core: 2
Core(s) per socket: 20
Socket(s): 2
Stepping: 0
BogoMIPS: 5600.01
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology cpuid tsc_known_freq pni pclmulqdq vmx ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves wbnoinvd arat vnmi avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid fsrm md_clear arch_capabilities
Virtualization: VT-x
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 2.5 MiB (80 instances)
L1i cache: 2.5 MiB (80 instances)
L2 cache: 160 MiB (40 instances)
L3 cache: 32 MiB (2 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-39
NUMA node1 CPU(s): 40-79
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Reg file data sampling: Vulnerable: No microcode
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS Not affected; BHI SW loop, KVM SW loop
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
==============================
Versions of relevant libraries
==============================
[pip3] flashinfer-python==0.5.3
[pip3] numpy==2.2.0
[pip3] nvidia-cublas-cu12==12.9.1.4
[pip3] nvidia-cuda-cupti-cu12==12.9.79
[pip3] nvidia-cuda-nvrtc-cu12==12.9.86
[pip3] nvidia-cuda-runtime-cu12==12.9.79
[pip3] nvidia-cudnn-cu12==9.10.2.21
[pip3] nvidia-cudnn-frontend==1.16.0
[pip3] nvidia-cufft-cu12==11.4.1.4
[pip3] nvidia-cufile-cu12==1.14.1.1
[pip3] nvidia-curand-cu12==10.3.10.19
[pip3] nvidia-cusolver-cu12==11.7.5.82
[pip3] nvidia-cusparse-cu12==12.5.10.65
[pip3] nvidia-cusparselt-cu12==0.7.1
[pip3] nvidia-cutlass-dsl==4.3.1
[pip3] nvidia-ml-py==13.580.82
[pip3] nvidia-nccl-cu12==2.27.5
[pip3] nvidia-nvjitlink-cu12==12.9.86
[pip3] nvidia-nvshmem-cu12==3.3.20
[pip3] nvidia-nvtx-cu12==12.9.79
[pip3] pyzmq==27.1.0
[pip3] torch==2.9.0+cu129
[pip3] torchaudio==2.9.0+cu129
[pip3] torchvision==0.24.0+cu129
[pip3] transformers==4.57.3
[pip3] triton==3.5.0
[conda] Could not collect
==============================
vLLM Info
==============================
ROCM Version : Could not collect
vLLM Version : 0.12.0
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV12 NV12 NV12 NV12 NV12 NV12 NV12 PIX 0-39 0 N/A
GPU1 NV12 X NV12 NV12 NV12 NV12 NV12 NV12 PIX 0-39 0 N/A
GPU2 NV12 NV12 X NV12 NV12 NV12 NV12 NV12 NODE 0-39 0 N/A
GPU3 NV12 NV12 NV12 X NV12 NV12 NV12 NV12 NODE 0-39 0 N/A
GPU4 NV12 NV12 NV12 NV12 X NV12 NV12 NV12 SYS 40-79 1 N/A
GPU5 NV12 NV12 NV12 NV12 NV12 X NV12 NV12 SYS 40-79 1 N/A
GPU6 NV12 NV12 NV12 NV12 NV12 NV12 X NV12 SYS 40-79 1 N/A
GPU7 NV12 NV12 NV12 NV12 NV12 NV12 NV12 X SYS 40-79 1 N/A
NIC0 PIX PIX NODE NODE SYS SYS SYS SYS X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_0
==============================
Environment Variables
==============================
VLLM_USAGE_SOURCE=production-docker-image
LD_LIBRARY_PATH=/usr/local/nvidia/lib64:/usr/local/cuda/lib64:/usr/local/cuda/lib64
NVIDIA_DRIVER_CAPABILITIES=compute,utility
NVIDIA_REQUIRE_CUDA=cuda>=12.9 brand=unknown,driver>=535,driver<536 brand=grid,driver>=535,driver<536 brand=tesla,driver>=535,driver<536 brand=nvidia,driver>=535,driver<536 brand=quadro,driver>=535,driver<536 brand=quadrortx,driver>=535,driver<536 brand=nvidiartx,driver>=535,driver<536 brand=vapps,driver>=535,driver<536 brand=vpc,driver>=535,driver<536 brand=vcs,driver>=535,driver<536 brand=vws,driver>=535,driver<536 brand=cloudgaming,driver>=535,driver<536 brand=unknown,driver>=550,driver<551 brand=grid,driver>=550,driver<551 brand=tesla,driver>=550,driver<551 brand=nvidia,driver>=550,driver<551 brand=quadro,driver>=550,driver<551 brand=quadrortx,driver>=550,driver<551 brand=nvidiartx,driver>=550,driver<551 brand=vapps,driver>=550,driver<551 brand=vpc,driver>=550,driver<551 brand=vcs,driver>=550,driver<551 brand=vws,driver>=550,driver<551 brand=cloudgaming,driver>=550,driver<551 brand=unknown,driver>=560,driver<561 brand=grid,driver>=560,driver<561 brand=tesla,driver>=560,driver<561 brand=nvidia,driver>=560,driver<561 brand=quadro,driver>=560,driver<561 brand=quadrortx,driver>=560,driver<561 brand=nvidiartx,driver>=560,driver<561 brand=vapps,driver>=560,driver<561 brand=vpc,driver>=560,driver<561 brand=vcs,driver>=560,driver<561 brand=vws,driver>=560,driver<561 brand=cloudgaming,driver>=560,driver<561 brand=unknown,driver>=565,driver<566 brand=grid,driver>=565,driver<566 brand=tesla,driver>=565,driver<566 brand=nvidia,driver>=565,driver<566 brand=quadro,driver>=565,driver<566 brand=quadrortx,driver>=565,driver<566 brand=nvidiartx,driver>=565,driver<566 brand=vapps,driver>=565,driver<566 brand=vpc,driver>=565,driver<566 brand=vcs,driver>=565,driver<566 brand=vws,driver>=565,driver<566 brand=cloudgaming,driver>=565,driver<566 brand=unknown,driver>=570,driver<571 brand=grid,driver>=570,driver<571 brand=tesla,driver>=570,driver<571 brand=nvidia,driver>=570,driver<571 brand=quadro,driver>=570,driver<571 brand=quadrortx,driver>=570,driver<571 brand=nvidiartx,driver>=570,driver<571 brand=vapps,driver>=570,driver<571 brand=vpc,driver>=570,driver<571 brand=vcs,driver>=570,driver<571 brand=vws,driver>=570,driver<571 brand=cloudgaming,driver>=570,driver<571
NVIDIA_VISIBLE_DEVICES=all
CUDA_VERSION=12.9.1
CUDA_LAUNCH_BLOCKING=1
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
🐛 Describe the bug
When running GPT-OSS-120B without the --enforce-eager flag, the model returns content: null when responses hit max_tokens, despite successfully generating tokens server-side and returning HTTP 200 OK.
Key characteristics:
-
Non-deterministic initially: First 1-2 requests may succeed, then subsequent requests fail
-
Becomes deterministic: After warm-up, fails consistently (100% failure rate)
-
Silent failure: No errors thrown, just null content with 200 OK status
-
Server-side generation succeeds: Logs show ~120-150 tokens/s throughput and 200 OK
-
Client-side receives nothing: content: null, reasoning_content: ""
Minimal reproduction code:
import requests
# Run this 3-5 times - first may work, then consistently fails
response = requests.post(
'http://localhost:8000/v1/chat/completions',
json={
'model': '/models/gpt-oss-120b',
'messages': [
{'role': 'system', 'content': 'You are a helpful assistant.'},
{'role': 'user', 'content': '''Analyze this complex distributed system architecture with microservices for API gateway, authentication, user management, content processing, search, analytics, notifications, caching, message queues, and databases. The system must handle 100K requests/second with 99.99% uptime across three availability zones. Provide detailed recommendations for fault tolerance, service mesh optimization, monitoring strategies, disaster recovery with RTO<1hr and RPO<5min, CI/CD improvements, cost optimization (40% reduction), SLO definitions, and incident response procedures. Include specific technologies and implementation steps.'''}
],
'max_tokens': 2048
},
timeout=120
)
result = response.json()
msg = result['choices'][0]['message']
usage = result['usage']
print(f"HTTP Status: {response.status_code}")
print(f"Content is None: {msg.get('content') is None}")
print(f"Tokens used: {usage['completion_tokens']}")
print(f"Finish reason: {result['choices'][0]['finish_reason']}")Observed behavior:
HTTP Status: 200
Content is None:
TrueTokens used: 2048
Finish reason: length
Full response structure:
{ "choices": [{ "message": { "role": "assistant", "content": null, "reasoning": "", "reasoning_content": "" }, "finish_reason": "length" }], "usage": { "prompt_tokens": 512, "completion_tokens": 2048 }}Server logs during the failed request:
INFO: Avg generation throughput: 148.0 tokens/sINFO: Avg generation throughput: 114.8 tokens/sINFO: HTTP/1.1 200 OK
Tokens ARE generated server-side (confirmed by throughput metrics) but never appear in the API response.
Additional observations:
- Tested with different
max_tokensvalues: 2048, 5000, 10000, 15000 - all fail when limit is hit - Tested with different
--max-model-lensettings: 25000, 32768 - bug persists - Simple prompts work: Short prompts like "Say hello" return content correctly
- Complex/long prompts fail: After 1-2 warm-up requests, consistently return null
Debug logs show CUDA graphs are active:
cudagraph_mode: FULL (across all 8 tensor parallel workers)
Workaround:
Adding --enforce-eager flag fixes the issue completely (100% success rate).
With this flag, the same prompts complete successfully with proper content formatting.
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.