title | author | date | output | ||||
---|---|---|---|---|---|---|---|
Analysis of 24Hr Movement Guideline Fibit Data |
Daniel Fuller |
26/07/2021 |
|
There are a number of data types and frequencies. Below is a summary:
-
Minute Frequency Data
- heartrate_1min_merged
- minuteCaloriesNarrow_merged
- minuteIntensitiesNarrow_merged
- minuteMETsNarrow_merged
- minuteSleep_merged
- minuteStepsNarrow_merged
-
Daily Frequency Data
- dailyCalories_merged
- dailyIntensities_merged
- dailySteps_merged
- sleepDay_merged
- heartRateZones_merged
- Daily time in 4 heart rate zones (Out of Range, Fat Burn, Cardio, Peak)
-
Other Frequency data
- activitylogs_merged
- An activity is recorded whenever the user inputs it
- battery_merged
- Battery level is recorded whenever there is a sync event
- syncEvents_merged
- All Sync events
- 30secondSleepStages_merged
- Sleep stages every 30 seconds.
- activitylogs_merged
- Combine the minute level data
- Combine day level data
- Aggregate minute level data to the day and confirm it makes sense with day level
- Join battery and sync events to the minute level data
- Aggregate everything up to the day level
hr_data <- read_csv("Data/heartrate_1min_merged.csv")
## Rows: 1773649 Columns: 3
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (2): Id, Time
## dbl (1): Value
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
hr_data$time <- mdy_hms(hr_data$Time)
hr_data$Time <- NULL
colnames(hr_data) <- c("id", "heart_rate_bmp", "time")
summary(hr_data$heart_rate_bmp)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 36.00 65.00 76.00 77.73 88.00 204.00
ggplot(hr_data, aes(heart_rate_bmp)) +
geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
ee_data <- read_csv("Data/minuteCaloriesNarrow_merged.csv")
## Rows: 2039924 Columns: 3
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (2): Id, ActivityMinute
## dbl (1): Calories
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
ee_data$time <- mdy_hms(ee_data$ActivityMinute)
ee_data$ActivityMinute <- NULL
colnames(ee_data) <- c("id", "calories", "time")
summary(ee_data$calories)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000 0.9598 1.0586 1.5370 1.2920 16.8428
ggplot(ee_data, aes(calories)) +
geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
See fitbit description for calories https://dev.fitbit.com/build/reference/web-api/intraday/get-activity-intraday-by-date/
## Using BMR/EER Algorithms
If a user had no Fitbit tracker data for the specific day then the greater of Logged Activities + BMR (for minutes when there is no activity) and the calories calculated from the EER for that day (if EER enabled for this user's profile) are taken. In case, there was some data from the tracker for the specific day, that data where available is used and for time where data is unavailable, the BMR is used. If the total is less than 20% greater than BMR then the EER (cals < EER * 0.8) is used. EER never used to calculate calories for today.
Using BMR Formula
Fitbit uses the standard MD Mifflin-St Jeor equation:
9.99 * weightKg + 6.25*heightCm - 4.92*ageYears + s, where s is +5 for
males
and -161 for female
EER Formula (TEE total energy expenditure)
The EER Formula is based on http://www.cdc.gov/pcd/issues/2006/oct/pdf/06_0034.pdf, which in turn is based on "Food and Nutrition Board. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids (macronutrients). Washington (DC): National Academy Press; 2005." http://www.nap.edu/openbook.php?isbn=0309085373&page=204
MALE-based EER Formula:
TEE = 864 - 9.72 x age (years) + 1.0 x (14.2 x weight(kg) + 503 x height
(meters))
FEMALE-based EER Formula:
TEE = 387 - 7.31 x age (years) + 1.0 x (10.9 x weight(kg) + 660.7 x height
(meters))
intense_data <- read_csv("Data/minuteIntensitiesNarrow_merged.csv")
## Rows: 2039924 Columns: 3
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (2): Id, ActivityMinute
## dbl (1): Intensity
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
intense_data$time <- mdy_hms(intense_data$ActivityMinute)
intense_data$ActivityMinute <- NULL
colnames(intense_data) <- c("id", "intensity", "time")
intense_data$intensity <- as.factor(intense_data$intensity)
table(intense_data$intensity)
##
## 0 1 2 3
## 1705018 274378 28023 32505
ggplot(intense_data, aes(intensity)) +
geom_bar()
This is a four category variable. Looks like it will match up with the heart rate zone data but not sure yet.
met_data <- read_csv("Data/minuteMETsNarrow_merged.csv")
## Rows: 2039924 Columns: 3
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (2): Id, ActivityMinute
## dbl (1): METs
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
met_data$time <- mdy_hms(met_data$ActivityMinute)
met_data$ActivityMinute <- NULL
colnames(met_data) <- c("id", "mets", "time")
summary(met_data$mets)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00 10.00 10.00 15.31 13.00 137.00
ggplot(met_data, aes(mets)) +
geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Interesting. Will need to look into how this is calculated. 10 METS as the median and 15 METS as the mean is not right.
sleep_data <- read_csv("Data/minuteSleep_merged.csv")
## Rows: 578422 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (2): Id, date
## dbl (2): value, logId
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
sleep_data$time <- mdy_hms(sleep_data$date)
sleep_data$date <- NULL
colnames(sleep_data) <- c("id", "sleep", "log_id", "time")
sleep_data$sleep <- as.factor(sleep_data$sleep)
table(sleep_data$sleep)
##
## 1 2 3
## 538051 36612 3759
ggplot(sleep_data, aes(sleep)) +
geom_bar()
This is a three category variable. There is a lot of missing here so I'm guessing that these represent sleep stages or something with a null value meaning not sleeping.
step_data <- read_csv("Data/minuteStepsNarrow_merged.csv")
## Rows: 2039924 Columns: 3
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (2): Id, ActivityMinute
## dbl (1): Steps
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
step_data$time <- mdy_hms(step_data$ActivityMinute)
step_data$ActivityMinute <- NULL
colnames(step_data) <- c("id", "steps", "time")
summary(step_data$steps)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000 0.000 0.000 5.998 0.000 199.000
ggplot(step_data, aes(steps)) +
geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
ee_intense <- full_join(ee_data, intense_data, by = c("id", "time"))
ee_intense_met <- full_join(ee_intense, met_data, by = c("id", "time"))
ee_intense_met_step <- full_join(ee_intense_met, step_data, by = c("id", "time"))
ee_intense_met_step_hr <- full_join(ee_intense_met_step, hr_data, by = c("id", "time"))
data <- full_join(ee_intense_met_step_hr, sleep_data, by = c("id", "time"))
## Filter out coordinator data
data <- filter(data, id != "Study Coordinator QU")
### Create a location variable
data$location <- substr(data$id, 1, 1)
### Create an intervention
data <- data %>%
mutate(intervention = case_when(
time < "2021-10-25 00:00:00" ~ "pre",
time >= "2021-10-25 00:00:00" & time < "2021-12-05 00:00:00" ~ "intervention",
time > "2021-12-05 00:00:00" ~ "post"
))
table(data$intervention)
##
## intervention pre
## 1498466 751117
### Recoding Sleep
data <- data %>%
mutate(sleep_yn = case_when(
sleep == 1 ~ "sleep",
sleep == 2 ~ "sleep",
sleep == 3 ~ "sleep",
TRUE ~ "awake"
))
table(data$sleep_yn)
##
## awake sleep
## 1681054 568529
rm(ee_data, ee_intense, ee_intense_met, ee_intense_met_step, ee_intense_met_step_hr, hr_data, intense_data, met_data, sleep_data, step_data)
data$day <- day(data$time)
data$hour <- hour(data$time)
hourly_summary <- data %>%
group_by(id, hour) %>%
get_summary_stats(calories, heart_rate_bmp, steps)
daily_summary <- data %>%
group_by(id, day) %>%
get_summary_stats(calories, heart_rate_bmp, steps)
ggplot(hourly_summary, aes(x = hour, y = variable, fill = mean)) +
geom_tile() +
facet_wrap(~ id) +
scale_fill_gradient(low = "grey20", high = "red") +
labs(x = "", y = "") +
theme_classic() +
theme(legend.position = "none")
ggplot(daily_summary, aes(x = day, y = variable, fill = mean)) +
geom_tile() +
facet_wrap(~ id) +
scale_fill_gradient(low = "grey20", high = "red") +
labs(x = "", y = "") +
theme_classic() +
theme(legend.position = "none")