输入某二叉树的前序遍历和中序遍历的结果,请重建该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。
例如,给出
前序遍历 preorder = [3,9,20,15,7]
中序遍历 inorder = [9,3,15,20,7]
返回如下的二叉树:
3
/ \
9 20
/ \
15 7
限制:
0 <= 节点个数 <= 5000
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def buildTree(self, preorder: List[int], inorder: List[int]) -> TreeNode:
if preorder is None or inorder is None or len(preorder) != len(inorder):
return None
return self._build_tree(preorder, 0, len(preorder) - 1, inorder, 0, len(inorder) - 1)
def _build_tree(self, preorder, s1, e1, inorder, s2, e2):
if s1 > e1 or s2 > e2:
return None
index = self._find_index(inorder, s2, e2, preorder[s1])
tree = TreeNode(preorder[s1])
tree.left = self._build_tree(preorder, s1 + 1, index + s1 - s2, inorder, s2, index - 1)
tree.right = self._build_tree(preorder, index + s1 - s2 + 1, e1, inorder, index + 1, e2)
return tree
def _find_index(self, order, s, e, val):
for i in range(s, e + 1):
if order[i] == val:
return i
return -1
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public TreeNode buildTree(int[] preorder, int[] inorder) {
if (preorder == null || preorder == null || preorder.length == 0 || preorder.length == 0 || preorder.length != inorder.length) {
return null;
}
return buildTree(preorder, 0, preorder.length - 1, inorder, 0, inorder.length - 1);
}
public TreeNode buildTree(int[] preorder, int s1, int e1, int[] inorder, int s2, int e2) {
if (s1 > e1 || s2 > e2) {
return null;
}
int index = findIndex(inorder, s2, e2, preorder[s1]);
TreeNode tree = new TreeNode(preorder[s1]);
tree.left = buildTree(preorder, s1 + 1, index + s1 - s2, inorder, s2, index - 1);
tree.right = buildTree(preorder, index + s1 - s2 + 1, e1, inorder, index + 1, e2);
return tree;
}
public int findIndex(int[] order, int s, int e, int val) {
for (int i = s; i <= e; ++i) {
if (order[i] == val) {
return i;
}
}
return -1;
}
}
/**
* Definition for a binary tree node.
* function TreeNode(val) {
* this.val = val;
* this.left = this.right = null;
* }
*/
/**
* @param {number[]} preorder
* @param {number[]} inorder
* @return {TreeNode}
*/
var buildTree = function(preorder, inorder) {
if(!preorder || !preorder.length) return null
let preIdx = 0
let inMap = {}
for(let i=0;i<inorder.length;i++) {
inMap[inorder[i]] = i
}
function func(start, end) {
if(start > end) {
return null
}
let preVal = preorder[preIdx]
preIdx++
let inIdx = inMap[preVal]
let node = new TreeNode(preVal)
node.left = func(start, inIdx - 1)
node.right = func(inIdx + 1, end)
return node
}
return func(0, preorder.length - 1)
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func buildTree(preorder []int, inorder []int) *TreeNode {
return helper(preorder, inorder, 0, 0, len(preorder)-1)
}
func helper(preorder, inorder []int, index, start, end int) *TreeNode {
if start > end {
return nil
}
root := &TreeNode{Val:preorder[index]}
j := start
for j < end && preorder[index] != inorder[j] {
j++
}
root.Left = helper(preorder, inorder, index + 1, start, j - 1)
root.Right = helper(preorder, inorder, index + 1 + j -start, j + 1, end)
return root
}