Skip to content

how to match quality of original implementation? #155

@tsaizhenling

Description

@tsaizhenling

I have been playing with the truck sample in both this repository and in graphdeco-inria /
gaussian-splatting
from this repo
^this repo
from reference
^ reference, trained with default parameters

I can't seem to replicate the same re-construction quality with this repository, (note that the fence cannot be rendered clearly). I have tried to match the learning rates, making the following changes to the config. what is causing the difference?

--- a/config/tat_truck_every_8_test.yaml
+++ b/config/tat_truck_every_8_test.yaml
@@ -31,8 +31,8 @@ print-metrics-to-console: False
 enable_taichi_kernel_profiler: False
 log_taichi_kernel_profile_interval: 3000
 log_validation_image: False
-feature_learning_rate: 0.005
-position_learning_rateo: 0.00005
+feature_learning_rate: 0.0025
+position_learning_rate: 0.00016
 position_learning_rate_decay_rate: 0.9947
 position_learning_rate_decay_interval: 100
 loss-function-config:
@@ -45,8 +45,11 @@ rasterisation-config:
   depth-to-sort-key-scale: 10.0
   far-plane: 2000.0
   near-plane: 0.4
+  grad_s_factor: 2
+  grad_q_factor: 0.4
+  grad_alpha_factor: 20
 summary-writer-log-dir: logs/tat_truck_every_8_experiment
-output-model-dir: logs/tat_truck_every_8_experiment
+output-model-dir: logs/tat_truck_every_8_experiment_matched_lr

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions