-
Notifications
You must be signed in to change notification settings - Fork 70
Open
Description
I have been playing with the truck sample in both this repository and in graphdeco-inria /
gaussian-splatting

^this repo

^ reference, trained with default parameters
I can't seem to replicate the same re-construction quality with this repository, (note that the fence cannot be rendered clearly). I have tried to match the learning rates, making the following changes to the config. what is causing the difference?
--- a/config/tat_truck_every_8_test.yaml
+++ b/config/tat_truck_every_8_test.yaml
@@ -31,8 +31,8 @@ print-metrics-to-console: False
enable_taichi_kernel_profiler: False
log_taichi_kernel_profile_interval: 3000
log_validation_image: False
-feature_learning_rate: 0.005
-position_learning_rateo: 0.00005
+feature_learning_rate: 0.0025
+position_learning_rate: 0.00016
position_learning_rate_decay_rate: 0.9947
position_learning_rate_decay_interval: 100
loss-function-config:
@@ -45,8 +45,11 @@ rasterisation-config:
depth-to-sort-key-scale: 10.0
far-plane: 2000.0
near-plane: 0.4
+ grad_s_factor: 2
+ grad_q_factor: 0.4
+ grad_alpha_factor: 20
summary-writer-log-dir: logs/tat_truck_every_8_experiment
-output-model-dir: logs/tat_truck_every_8_experiment
+output-model-dir: logs/tat_truck_every_8_experiment_matched_lr
Metadata
Metadata
Assignees
Labels
No labels